skip to main content


Title: Capacitive deionization and electrosorption for heavy metal removal
Capacitive deionization (CDI) technologies have gained intense attention for water purification and desalination in recent years. Inexpensive and widely available porous carbon materials have enabled the fast growth of electrosorption research, highlighting the promise of CDI as a potentially cost-effective technology to remove ions. Whereas the main focus of CDI has been on bulk desalination, there has been a recent shift towards electrosorption for selective ion separations. Heavy metals are pollutants that can have severe health impacts and are present in both industrial wastewater and groundwater leachates. Heavy metal ions, such as chromium, cadmium, or arsenic, are of great concern to traditional treatment technologies, due to their low concentration and the presence of competing species. The modification/functionalization of porous carbon and recent developments of faradaic and redox-active materials have offered a new avenue for selective ion-binding of heavy metal contaminants. Here, we review the progress in electrosorptive technologies for heavy metal separations. We provide an overview of the wide applicability of carbon-based electrodes for heavy metal removal. In parallel, we highlight the trend toward modification of carbon materials, new developments in faradaic interfaces, and the underlying physico-chemical mechanisms that promote selective heavy metal separations.  more » « less
Award ID(s):
1931941
NSF-PAR ID:
10176363
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
6
Issue:
2
ISSN:
2053-1400
Page Range / eLocation ID:
258 to 282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Highly efficient capacitive deionization (CDI) relies on unimpeded transport of salt ions to the electrode surface. Graphene is an ideal candidate to provide superb conditions for ion adsorption as it possesses high theoretical surface area and electrical conductivity. When ions are stored solely within the electric double layers (EDLs), a hydrophilic graphene surface with hierarchical pores can maximize the accessible surface area and promote the ion transport. In the case of synergistic ion storage via electrostatic adsorption and faradaic redox reaction, graphene can act as both the electron highway and the reciprocal spacer to provide surface-confined effects. Substantially, structural and chemical engineering towards graphene can enhance the ion removal capacity and rate, and improve the charge efficiency and ion selectivity. In this review, we keep pace with the in-depth studies of CDI technologies and recent progress on graphene-based materials for CDI. Major challenges in the rational assembly of the desired material functionalities in terms of surface area, pore structure, and hydrophilicity are addressed. As electrode materials develop, the ultimate goal is to achieve highly efficient, energy-saving, and environment-friendly CDI. 
    more » « less
  2. Capacitive deionization (CDI) is an energy saving and environmentally friendly technology for water desalination. However, classical CDI is challenged by a low salt removal capacity. To improve the desalination capacity, electrode materials utilizing the battery mechanism for salt ion removal have emerged as a new direction more recently. In this work, we report a study of amorphous iron phosphate (FePO 4 ) as a promising electrode material for pseudocapacitive sodium ion removal. Sodium ions can be effectively, reversibly intercalated and de-intercalated upon its electrochemical reduction and oxidation, with an excellent sodium ion capacity under half-cell testing conditions. By assembling a hybrid CDI (HCDI) system utilizing the FePO 4 electrode for pseudocapacitive sodium ion removal and active carbon electrode for capacitive chloride ion removal, the cell exhibited a high salt removal capacity and good reversibility and durability, which was attributed to the advantageous features of amorphous FePO 4 . The HCDI system achieved a high deionization capacity (82 mg g −1 ) in 10 mM NaCl, a fast deionization rate (0.046 mg g −1 s −1 ), and good stability and cyclability. 
    more » « less
  3. Abstract

    Polymers are unarguably the most broadly used membrane materials for molecular separations and beyond. Motivated by the commercial success of membrane‐based desalination and permanent gas separations, glassy polymer membranes are increasingly being studied for hydrocarbon separations. They represent a class of challenging yet economically impactful bulk separations extensively practiced in the refining and petrochemical industry. This review discusses recent developments in membrane‐based hydrocarbon separations using glassy polymer membranes relying on the sorption‐diffusion mechanism. Hydrocarbon separations by both diffusion‐selective and sorption‐selective glassy polymer membranes are considered. Opinions on the likelihoods of large‐scale implementation are provided for selected hydrocarbon pairs. Finally, a discussion of the challenges and outlook of glassy polymer membrane‐based hydrocarbon separations is presented.

     
    more » « less
  4. Hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO2 and todorokite-MnO2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g−1, 44.4 mg g−1, and 43.1 mg g−1 in NaCl, KCl, and MgCl2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g−1 s−1, 0.165 mg g−1 s−1, and 0.164 mg g−1 s−1 in NaCl, KCl, and MgCl2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. This work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions. 
    more » « less
  5. Abstract

    Water pollution is a major global challenge, as conventional polymeric membranes are not adequate for water treatment anymore. Among emerging materials for water treatment, composite membranes are promising, as they have simultaneously improved water permeation and ions rejection. Recently, a new family of 2D materials called MXenes has attracted considerable attention due to their appealing properties and wide applications. MXenes can be incorporated into many polymeric materials due to their high compatibility. MXenes/polymer composite membranes have been found to have appealing electrical, thermal, mechanical, and transport properties, because of strong interactions between polymer chains and surface functional groups of MXenes and the selective nanochannels that are created. This article reviews advances made in the area of ion‐selective MXene‐based membranes for water purification. It puts the advances into perspective and provides prospects. MXenes’ properties and synthesis methods are briefly described. Strategies for the preparation of MXene‐based membranes including mixed‐matrix membranes, thin‐film nanocomposite membranes, and laminated membranes are reviewed. Recent advances in ion‐separation and water‐desalination MXene‐based membranes are elucidated. The dependence of ion‐separation performance of the membranes on fabrication techniques, MXene's interlayer spacing, and MXene's various surface terminations are elucidated. Finally, opportunities and challenges in ion‐selective MXene‐based membranes are discussed.

     
    more » « less