There is a general lack of consensus on the best practices for filtering of single‐nucleotide polymorphisms (SNPs) and whether it is better to use SNPs or include flanking regions (full “locus”) in phylogenomic analyses and subsequent comparative methods. Using genotyping‐by‐sequencing data from 22Glycinespecies, we assessed the effects of SNP vs. locus usage and SNP retention stringency. We compared branch length, node support, and divergence time estimation across 16 datasets with varying amounts of missing data and total size. Our results revealed five aspects of phylogenomic data usage that may be generally applicable: (1) tree topology is largely congruent across analyses; (2) filtering strictly for SNP retention (e.g., 90–100%) reduces support and can alter some inferred relationships; (3) absolute branch lengths vary by two orders of magnitude between SNP and locus datasets; (4) data type and branch length variation have little effect on divergence time estimation; and (5) phylograms alter the estimation of ancestral states and rates of morphological evolution. Using SNP or locus datasets does not alter phylogenetic inference significantly, unless researchers want or need to use absolute branch lengths. We recommend against using excessive filtering thresholds for SNP retention to reduce the risk of producing inconsistent topologies and generating low support.
more »
« less
Molecular and morphological clocks for estimating evolutionary divergence times
Abstract Background Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference. Results We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur as some intermediate nodes may show large time differences between these two types of data. Conclusions Our findings suggest that node- and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of intrinsic time structure in morphological and molecular data before any dating analysis using combined datasets.
more »
« less
- PAR ID:
- 10294055
- Date Published:
- Journal Name:
- BMC Ecology and Evolution
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 2730-7182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The conventional wisdom in molecular evolution is to apply parameter-rich models of nucleotide and amino acid substitutions for estimating divergence times. However, the actual extent of the difference between time estimates produced by highly complex models compared with those from simple models is yet to be quantified for contemporary data sets that frequently contain sequences from many species and genes. In a reanalysis of many large multispecies alignments from diverse groups of taxa, we found that the use of the simplest models can produce divergence time estimates and credibility intervals similar to those obtained from the complex models applied in the original studies. This result is surprising because the use of simple models underestimates sequence divergence for all the data sets analyzed. We found three fundamental reasons for the observed robustness of time estimates to model complexity in many practical data sets. First, the estimates of branch lengths and node-to-tip distances under the simplest model show an approximately linear relationship with those produced by using the most complex models applied on data sets with many sequences. Second, relaxed clock methods automatically adjust rates on branches that experience considerable underestimation of sequence divergences, resulting in time estimates that are similar to those from complex models. And, third, the inclusion of even a few good calibrations in an analysis can reduce the difference in time estimates from simple and complex models. The robustness of time estimates to model complexity in these empirical data analyses is encouraging, because all phylogenomics studies use statistical models that are oversimplified descriptions of actual evolutionary substitution processes.more » « less
-
Abstract Time‐scaled phylogenies underpin the interrogation of evolutionary processes across deep timescales, as well as attempts to link these to Earth's history. By inferring the placement of fossils and using their ages as temporal constraints, tip dating under the fossilized birth–death (FBD) process provides a coherent prior on divergence times. At the same time, it also links topological and temporal accuracy, as incorrectly placed fossil terminals should misinform divergence times. This could pose serious issues for obtaining accurate node ages, yet the interaction between topological and temporal error has not been thoroughly explored. We simulate phylogenies and associated morphological datasets using methodologies that incorporate evolution under selection, and are benchmarked against empirical datasets. We find that datasets of 300 characters and realistic levels of missing data generally succeed in inferring the correct placement of fossils on a constrained extant backbone topology, and that true node ages are usually contained within Bayesian posterior distributions. While increased fossil sampling improves the accuracy of inferred ages, topological and temporal errors do not seem to be linked: analyses in which fossils resolve less accurately do not exhibit elevated errors in node age estimates. At the same time, inferred divergence times are biased, probably due to a mismatch between the FBD prior and the shape of our simulated trees. While these results are encouraging, suggesting that even fossils with uncertain affinities can provide useful temporal information, they also emphasize that palaeontological information cannot overturn discrepancies between model priors and the true diversification history.more » « less
-
Paleontological and neontological systematics seek to answer evolutionary questions with different datasets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared to a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses.more » « less
-
Abstract Rapid speciation events, with taxa generated over a short time period, are among the most investigated biological phenomena. However, molecular systematics often reveals contradictory results compared with morphological/phenotypical diagnoses of species under scenarios of recent and rapid diversification. In this study, we used molecular data from an average of over 29 000 loci per sample from RADseq to reconstruct the diversification history and delimit the species boundary in a short‐winged grasshopper species complex (Melanoplus scudderigroup), where Pleistocene diversification has been hypothesized to generate more than 20 putative species with distinct male genitalic shapes. We found that, based on a maximum likelihood molecular phylogeny, each morphological species indeed forms a monophyletic group, contrary to the result from a previous mitochondrial DNA sequence study. By dating the diversification events, the species complex is estimated to have diversified during the Late Pleistocene, supporting the recent radiation hypothesis. Furthermore, coalescent‐based species delimitation analyses provide quantitative support for independent genetic lineages, which corresponds to the morphologically defined species. Our results also showed that male genitalic shape may not be predicted by evolutionary distance among species, not only indicating that this trait is labile, but also implying that selection may play a role in character divergence. Additionally, our findings suggest that the rapid speciation events in this flightless grasshopper complex might be primarily associated with the fragmentation of their grassland habitats during the Late Pleistocene. Collectively, our study highlights the importance of integrating multiple sources of information to delineate species, especially for a species complex that diversified rapidly, and whose divergence may be linked to ecological processes that create geographic isolation (i.e. fragmented habitats), as well as selection acting on characters with direct consequences for reproductive isolation (i.e. genitalic divergence).more » « less
An official website of the United States government

