skip to main content

Title: The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs
Abstract The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and more » RNA. « less
Authors:
; ; ; ;
Award ID(s):
1955940
Publication Date:
NSF-PAR ID:
10294192
Journal Name:
Nucleic Acids Research
Volume:
49
Issue:
1
Page Range or eLocation-ID:
79 to 89
ISSN:
0305-1048
Sponsoring Org:
National Science Foundation
More Like this
  1. Peptide nucleic acids (PNAs) are high-affinity synthetic nucleic acid analogs capable of hybridization with native nucleic acids. PNAs synthesized having amino acid sidechains installed at the γ-position along the backbone provide a template for a single biopolymer to simultaneously encode nucleic acid and amino acid sequences. Previously, we reported the development of “bilingual” PNAs through the synthesis of an amphiphilic sequence featuring separate blocks of hydrophobic and hydrophilic amino acid functional groups. These PNAs combined the sequence-specific binding activity of nucleic acids with the structural organization properties of peptides. Like other amphiphilic compounds, these γ-PNAs were observed to assemble spontaneouslymore »into micelle-like nanostructures in aqueous solutions and disassembly was induced through hybridization to a complementary sequence. Here, we explore whether assembly of these bilingual PNAs is possible by harnessing the nucleic acid code. Specifically, we designed an amphiphile-masking duplex system in which spontaneous amphiphile assembly is prevented through hybridization to a nucleic acid masking sequence. We show that the amphiphile is displaced upon introduction of a releasing sequence complementary to the masking sequence through toehold mediated displacement. Upon release, we observe that the amphiphile proceeds to assemble in a fashion consistent with our previously reported structures. Our approach represents a novel method for controlled stimuli-responsive assembly of PNA-based nanostructures.« less
  2. Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification locations and cellular functions, but the various sulfur modifications sharemore »common biosynthetic strategies across RNA species, cell types and all domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobase with emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating the sulfur modifications is to enrich the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapy. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.« less
  3. Cell division cycle 5 (Cdc5) is a highly conserved nucleic acid binding protein among eukaryotes and plays critical roles in development. Cdc5 can simultaneously bind to DNA and RNA by its N-terminal DNA-binding domain (DBD), but molecular mechanisms describing its nucleic acid recognition and the regulation of development through its nucleic acid binding remain unclear. Herein, we present a crystal structure of the N-terminal DBD of MoCdc5 (MoCdc5-DBD) from the rice blast fungus Magnaporthe oryzae. Residue K100 of MoCdc5 is on the periphery of a positively charged groove that is formed by K42, K45, R47, and N92 and is evolutionallymore »conserved. Mutation of K100 significantly reduces the affinity of MoCdc5-DBD to a Cdc5-binding element but not to a conventional myeloblastosis (Myb) domain-binding element, suggesting that K100 is a key residue of the high binding affinity to Cdc5-binding element. Another conserved residue (R31) is located close to the U6 RNA in the structure of the spliceosome, and its mutation dramatically reduces the binding capacity of MoCdc5-DBD for U6 RNA. Importantly, mutations in these key residues, including R31, K42, and K100 in AtCDC5, an Arabidopsis thaliana ortholog of MoCdc5, greatly impair the functions of AtCDC5, resulting in pleiotropic development defects and reduced levels of primary microRNA transcripts. Taken together, our findings suggest that Cdc5-DBD binds nucleic acids with two distinct binding surfaces, one for DNA and another for RNA, which together contribute to establishing the regulation mechanism of Cdc5 on development through nucleic acid binding.« less
  4. Nature encodes the information required for life in two fundamental biopolymers: nucleic acids and proteins. Peptide nucleic acid (PNA), a synthetic analog comprised of nucleobases arrayed along a pseudopeptide backbone, has the ability to combine the power of nucleic acids to encode information with the versatility of amino acids to encode structure and function. Historically, PNA has been perceived as a simple nucleic acid mimic having desirable properties such as high biostability and strong affinity for complementary nucleic acids. In this feature article, we aim to adjust this perception by highlighting the ability of PNA to act as a peptidemore »mimic and showing the largely untapped potential to encode information in the amino acid sequence. First, we provide an introduction to PNA and discuss the use of conjugation to impart tunable properties to the biopolymer. Next, we describe the integration of functional groups directly into the PNA backbone to impart specific physical properties. Lastly, we highlight the use of these integrated amino acid side chains to encode peptide-like sequences in the PNA backbone, imparting novel activity and function and demonstrating the ability of PNA to simultaneously mimic both a peptide and a nucleic acid.« less
  5. Peptide nucleic acids (PNAs) are a promising group of synthetic analogues of DNA and RNA that offer several distinct advantages over the naturally occurring nucleic acids for applications in biosensing, drug delivery, and nanoelectronics. Because of its structural differences from DNA/RNA, methods to analyze and assess the structure, conformations, and dynamics are needed. In this work, we develop synergistic techniques for the study of the PNA conformation. We use CuQ2, a Cu(II) complex with 8-hydroxyquinoline (HQ), as an alternative base pair and as a spin label in electron paramagnetic resonance (EPR) distance methods. We use molecular dynamics (MD) simulations withmore »newly developed force field parameters for the spin labels to interpret the distance constraints determined by EPR. We complement these methods by UV–vis and circular dichroism measurements and assess the efficacy of the Cu(II) label on a PNA duplex whose backbone is based on aminoethylglycine and a duplex with a hydroxymethyl backbone modification. We show that the Cu(II) label functions efficiently within the standard PNA and the hydroxymethyl-modified PNA and that the MD parameters may be used to accurately reproduce our EPR findings. Through the combination of EPR and MD, we gain new insights into the PNA structure and conformations as well as into the mechanism of orientational selectivity in Cu(II) EPR at X-band. These results present for the first time a rigid Cu(II) spin label used for EPR distance measurements in PNA and the accompanying MD force fields for the spin label. Our studies also reveal that the spin labels have a low impact on the structure of the PNA duplexes. The combined MD and EPR approach represents an important new tool for the characterization of the PNA duplex structure and provides valuable information to aid in the rational application of PNA at large.« less