Abstract Four new isoorotamide (Io)‐containing PNA nucleobases have been designed for A−U recognition of double helical RNA. New PNA monomers were prepared efficiently and incorporated into PNA nonamers for binding A−U in a PNA:RNA2triplex. Isothermal titration calorimetry and UV thermal melting experiments revealed slightly improved binding affinity for singly modified PNA compared to known A‐binding nucleobases. Molecular dynamics simulations provided further insights into binding ofIobases in the triple helix. Together, the data revealed interesting insights into binding modes including the notion that three Hoogsteen hydrogen bonds are unnecessary for strong selective binding of an extended nucleobase. Cationic monomerIo8additionally gave the highest affinity observed for an A‐binding nucleobase to date. These results will help inform future nucleobase design toward the goal of recognizing any sequence of double helical RNA.
more »
« less
Nucleobase and Linker Modification for Triple‐Helical Recognition of Pyrimidines in RNA Using Peptide Nucleic Acids
Abstract Triple‐helical recognition of any sequence of double‐stranded RNA requires high affinity Hoogsteen hydrogen binding to pyrimidine interruptions of polypurine tracts. Because pyrimidines have only one hydrogen bond donor/acceptor on Hoogsteen face, their triple‐helical recognition is a formidable problem. The present study explored various five‐membered heterocycles and linkers that connect nucleobases to backbone of peptide nucleic acid (PNA) to optimize formation of X•C‐G and Y•U‐A triplets. Molecular modeling and biophysical (UV melting and isothermal titration calorimetry) results revealed a complex interplay between the heterocyclic nucleobase and linker to PNA backbone. While the five‐membered heterocycles did not improve pyrimidine recognition, increasing the linker length by four atoms provided promising gains in binding affinity and selectivity. The results suggest that further optimization of heterocyclic bases with extended linkers to PNA backbone may be a promising approach to triple‐helical recognition of RNA.
more »
« less
- Award ID(s):
- 2107900
- PAR ID:
- 10437552
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemBioChem
- Volume:
- 24
- Issue:
- 15
- ISSN:
- 1439-4227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Peptide nucleic acid (PNA) forms a triple helix with double‐stranded RNA (dsRNA) stabilized by a hydrogen‐bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen‐bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A‐form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B‐form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA‐DNA triplexes compared to PNA‐RNA. To test this hypothesis, we synthesized triplex‐forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A‐form‐like conformations when binding double‐stranded nucleic acids. It appears that the original six‐atom‐long PNA backbone is an almost perfect fit for binding to A‐form nucleic acids.more » « less
-
Abstract Triplex-forming peptide nucleic acids (PNAs) require chemical modifications for efficient sequence-specific recognition of DNA and RNA at physiological pH. Our research groups have developed 2-aminopyridine (M) as an effective mimic of protonated cytosine in C+•G-C triplets. M-modified PNAs have a high binding affinity and sequence specificity as well as promising biological properties for improving PNA applications. This communication reports the optimization of synthetic procedures that give PNA M monomer in seven steps, with minimal need for column chromatography and in good yields and high purity. The optimized route uses inexpensive reagents and easily performed reactions, which will be useful for the broad community of nucleic acid chemists. Thought has also been given to the potential for future development of industrial syntheses of M monomers.more » « less
-
Abstract Peptide nucleic acids (PNA) with extended isoorotamide containing nucleobases (Io) were designed for binding A–U base pairs in double‐stranded RNA. Isothermal titration calorimetry and UV thermal melting experiments revealed improved affinity for A–U using theIoscaffold in PNA. PNAs having four sequentialIoextended nucleobases maintained high binding affinity.more » « less
-
null (Ed.)Abstract Small molecule-based modulation of a triple helix in the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been proposed as an attractive avenue for cancer treatment and a model system for understanding small molecule:RNA recognition. To elucidate fundamental recognition principles and structure–function relationships, we designed and synthesized nine novel analogs of a diphenylfuran-based small molecule DPFp8, a previously identified lead binder of MALAT1. We investigated the role of recognition modalities in binding and in silico studies along with the relationship between affinity, stability and in vitro enzymatic degradation of the triple helix. Specifically, molecular docking studies identified patterns driving affinity and selectivity, including limited ligand flexibility, as observed by ligand preorganization and 3D shape complementarity for the binding pocket. The use of differential scanning fluorimetry allowed rapid evaluation of ligand-induced thermal stabilization of the triple helix, which correlated with decreased in vitro degradation of this structure by the RNase R exonuclease. The magnitude of stabilization was related to binding mode and selectivity between the triple helix and its precursor stem loop structure. Together, this work demonstrates the value of scaffold-based libraries in revealing recognition principles and of raising broadly applicable strategies, including functional assays, for small molecule–RNA targeting.more » « less
An official website of the United States government
