skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Significant Zr isotope variations in single zircon grains recording magma evolution history
Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ 94 Zr) and high–spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon–melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation.  more » « less
Award ID(s):
1725002
PAR ID:
10294215
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
35
ISSN:
0027-8424
Page Range / eLocation ID:
21125 to 21131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We undertook Zr isotope measurements on zircon, titanite, biotite, amphibole, and whole rocks from the La Posta pluton (Peninsular Ranges, southern California) together with trace element analyses and U-Pb age measurements to understand the controls on Zr isotope fractionation in igneous rocks, including temperature, crystallization sequence, and kinetic effects. We find large (>0.6‰) Zr isotope fractionations (expressed as δ94/90Zr) between titanite and zircon forming at approximately the same temperature. Using equilibrium fractionation factors calculated from ionic and ab initio models, we infer the controls on Zr isotope evolution to include the relative order in which phases appear on the liquidus, with titanite fractionation resulting in isotopically lighter melt and zircon fractionation resulting in isotopically heavier melt. While these models of Zr fractionation can explain δ94/90Zr variations in zircon of up to ∼1.5‰, crystallization order, temperature and presence of co-crystallizing phases do not explain all aspects of the intracrystalline Zr isotopic distribution in zircons in the La Posta pluton or the large range of Zr isotopic values among zircons (>2‰). Without additional constraints, such as knowledge of co-crystallizing phases and a better understand of the true causes of Zr isotope fractionation, Zr isotopes in zircon remains an ambiguous proxy of magmatic evolution. 
    more » « less
  2. Zirconium is a commonly used elemental tracer of silicate differentiation, yet its stable isotope systematics remain poorly known. Accessory phases rich in Zr 4+ such as zircon and baddeleyite may preserve a unique record of Zr isotope behavior in magmatic environments, acting both as potential drivers of isotopic fractionation and recorders of melt compositional evolution. To test this potential, we measured the stable Zr isotope composition of 70 single zircon and baddeleyite crystals from a well-characterized gabbroic igneous cumulate. We show that (i) closed-system magmatic crystallization can fractionate Zr stable isotopes at the >0.5% level, and (ii) zircon and baddeleyite are isotopically heavy relative to the melt from which they crystallize, thus driving chemically differentiated liquids toward isotopically light compositions. Because these effects are contrary to first-order expectations based on mineral-melt bonding environment differences, Zr stable isotope fractionation during zircon crystallization may not solely be a result of closed-system thermodynamic equilibrium. 
    more » « less
  3. Zirconium (Zr) plays a key role in the development of phases like zircon (ZrSiO 4 ) and baddeleyite (ZrO 2 ) in magmatic systems. These minerals are crucial for the study of geologic time and crustal evolution, and their high resistivity to weathering and erosion results in their preservation on timescales of billions of years. Although zircon and baddeleyite may also preserve a robust record of Zr isotope behavior in high-temperature terrestrial environments, little is known about the factors that control Zr isotope partitioning in magmatic systems, the petrogenetic significance of fractionated compositions, or how these variations are recorded in Zr-rich accessory phases. Here, we describe a new analytical protocol for accurately determining the Zr stable isotope composition of zircon by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), using the double-spike method to correct for procedural and instrumental mass bias. We apply this technique to test whether zircon crystallization in carbonatite magmatic systems is a driver of Zr isotope fractionation by interrogating the internal zonation of a zircon megacryst from the Mud Tank carbonatite (MTUR1). We find the MTUR1 megacryst to lack internal zoning within analytical uncertainties with a mean μ 94/90 Zr NIST = −55 ± 28 ppm (2 SD, n = 151), which suggests that zircon crystallization is not a driver of Zr isotope fractionation in carbonatite magmas. This observation is in stark contrast with those made in silicate magmatic systems, raising the possibility that the bonding environment of Zr 4+ ions may be fundamentally different in carbonatite vs. silicate melts. Because of its remarkable homogeneity, the MTUR1 megacryst is an ideal natural reference material for Zr isotopic analysis of zircon using both solution and spatially resolved methods. The reproducibility of a pure Zr solution and our chemically purified zircon fractions indicate that the external reproducibility of our method is on the order of ±28 ppm for μ 94/90 Zr, or ±7 ppm per amu, at 95% confidence. 
    more » « less
  4. Titanium and Fe isotopic compositions of lavas from a calc-alkaline differentiation suite and corresponding mineral separates from the Rindjani Volcano, Indonesia show that Fe and Ti isotopic fractionations between minerals and melts are lower than those recorded in other suites at all stages of differentiation. The limited isotopic fractionation for Ti is likely due to low-Ti magnetite and clinopyroxene being the dominant carriers of Ti in Rindjani lavas, as these minerals are thought to have limited equilibrium Ti isotopic fractionation relative to silicate magmas. Other magmatic differentiation suites controlled by removal of Ti-rich magnetite and characterized by a lesser role of clinopyroxene have larger Ti isotopic fractionations. This effect is an indirect consequence of the elevated Fe3+/Fe2+ ratio of calc-alkaline magmas such as Rindjani, which promotes Fe3+ incorporation into magnetite at the expense of Fe2+-Ti4+ pairs, such that increased oxygen fugacity will subdue Ti isotopic fractionation in global magmatic series. Similarly, we find negligible Fe isotopic fractionation in Rindjani bulk rocks and mineral separates, unlike previous studies. This is also likely due to the oxidized nature of the Rindjani differentiation suite, which leads to similar Fe3+/Fe2+ ratios in melt and minerals and decreases overall mineral-melt Fe fractionation factors. Paired Ti and Fe isotopic analyses may therefore represent a powerful tool to assess oxygen fugacity during differentiation, independent from Fe 3+ determinations of erupted samples. 
    more » « less
  5. Zirconium (Zr) stable isotope variations occur among co-existing Zr-rich accessory phases as well as at the bulk-rock scale, but the petrologic mechanism(s) responsible for Zr isotope fractionation during magmatic differentiation remain unclear. Juvenile magma generation and intra-crustal differentiation in convergent continental margins may play a crucial role in developing Zr isotope variations, and the Northern Volcanic Zone of the Andes is an ideal setting to test this hypothesis. To investigate the influence of these processes on Zr stable isotope compositions, we report δ94/90ZrNIST of whole rock samples from: 1) juvenile arc basalts from the Quaternary Granatifera Tuff, Colombia; 2) lower crust-derived garnet pyroxenites (i.e., arclogites), hornblendites, and gabbroic cumulates found in the same unit; and 3) felsic volcanic products from the Doña Juana Volcanic Complex, a dacitic composite volcano in close proximity to and partially covering the Granatifera Tuff. The basalts have δ94/90ZrNIST values ranging from −0.025 ± 0.018 ‰ to +0.003 ± 0.015 ‰ (n = 8), within the range of mid-ocean ridge basalts. The dacites have δ94/90ZrNIST values ranging from +0.008 ± 0.013 ‰ to +0.043 ± 0.015 ‰ (n = 14), slightly positive relative to the Granatifera and mid-ocean ridge basalts. In contrast, the (ultra)mafic cumulates have highly variable, predominantly positive δ94/90ZrNIST values, ranging from −0.134 ± 0.012 ‰ to +0.428 ± 0.012 ‰ (n = 15). Individual grains and mineral fractions of major rock-forming phases, including garnet (n = 21), amphibole (n = 9), and clinopyroxene (n = 18), were analyzed from 8 (ultra)mafic cumulates. The mineral fractions record highly variable Zr isotopic compositions, with inter-mineral fractionation (Δ94/90Zrgarnet-amphibole) up to 2.067 ‰. Recent ab initio calculations of Zr–O bond force constants in rock-forming phases predict limited inter-mineral Zr isotope fractionation in high-temperature environments, suggesting that the large fractionations we observe are not the product of vibrational equilibrium processes. Instead, we propose a scenario in which large Zr isotopic fractionations develop kinetically, induced by sub-solidus Zr diffusion between coexisting phases via changes in Zr distribution coefficients that arise from changes in temperature. Altogether, Zr isotope variability in this calc-alkaline continental arc setting exhibits no correlation with indices of magmatic differentiation (e.g., Mg#, SiO2), and is not a simple function of fractional crystallization. Furthermore, the garnet clinopyroxenite cumulates studied here represent density-unstable lower arc crust material; consequently, material with isotopically variable δ94/90Zr can be recycled into the mantle as a consequence of lower crustal foundering. 
    more » « less