skip to main content


This content will become publicly available on August 1, 2024

Title: Redox and mineral controls on Fe and Ti isotopic fractionations during calc-alkaline magmatic differentiation
Titanium and Fe isotopic compositions of lavas from a calc-alkaline differentiation suite and corresponding mineral separates from the Rindjani Volcano, Indonesia show that Fe and Ti isotopic fractionations between minerals and melts are lower than those recorded in other suites at all stages of differentiation. The limited isotopic fractionation for Ti is likely due to low-Ti magnetite and clinopyroxene being the dominant carriers of Ti in Rindjani lavas, as these minerals are thought to have limited equilibrium Ti isotopic fractionation relative to silicate magmas. Other magmatic differentiation suites controlled by removal of Ti-rich magnetite and characterized by a lesser role of clinopyroxene have larger Ti isotopic fractionations. This effect is an indirect consequence of the elevated Fe3+/Fe2+ ratio of calc-alkaline magmas such as Rindjani, which promotes Fe3+ incorporation into magnetite at the expense of Fe2+-Ti4+ pairs, such that increased oxygen fugacity will subdue Ti isotopic fractionation in global magmatic series. Similarly, we find negligible Fe isotopic fractionation in Rindjani bulk rocks and mineral separates, unlike previous studies. This is also likely due to the oxidized nature of the Rindjani differentiation suite, which leads to similar Fe3+/Fe2+ ratios in melt and minerals and decreases overall mineral-melt Fe fractionation factors. Paired Ti and Fe isotopic analyses may therefore represent a powerful tool to assess oxygen fugacity during differentiation, independent from Fe 3+ determinations of erupted samples.  more » « less
Award ID(s):
2143168
NSF-PAR ID:
10490365
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Geochimica et Cosmochimica Acta
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Volume:
355
Issue:
C
ISSN:
0016-7037
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zirconium (Zr) stable isotope variations occur among co-existing Zr-rich accessory phases as well as at the bulk-rock scale, but the petrologic mechanism(s) responsible for Zr isotope fractionation during magmatic differentiation remain unclear. Juvenile magma generation and intra-crustal differentiation in convergent continental margins may play a crucial role in developing Zr isotope variations, and the Northern Volcanic Zone of the Andes is an ideal setting to test this hypothesis. To investigate the influence of these processes on Zr stable isotope compositions, we report δ94/90ZrNIST of whole rock samples from: 1) juvenile arc basalts from the Quaternary Granatifera Tuff, Colombia; 2) lower crust-derived garnet pyroxenites (i.e., arclogites), hornblendites, and gabbroic cumulates found in the same unit; and 3) felsic volcanic products from the Doña Juana Volcanic Complex, a dacitic composite volcano in close proximity to and partially covering the Granatifera Tuff. The basalts have δ94/90ZrNIST values ranging from −0.025 ± 0.018 ‰ to +0.003 ± 0.015 ‰ (n = 8), within the range of mid-ocean ridge basalts. The dacites have δ94/90ZrNIST values ranging from +0.008 ± 0.013 ‰ to +0.043 ± 0.015 ‰ (n = 14), slightly positive relative to the Granatifera and mid-ocean ridge basalts. In contrast, the (ultra)mafic cumulates have highly variable, predominantly positive δ94/90ZrNIST values, ranging from −0.134 ± 0.012 ‰ to +0.428 ± 0.012 ‰ (n = 15). Individual grains and mineral fractions of major rock-forming phases, including garnet (n = 21), amphibole (n = 9), and clinopyroxene (n = 18), were analyzed from 8 (ultra)mafic cumulates. The mineral fractions record highly variable Zr isotopic compositions, with inter-mineral fractionation (Δ94/90Zrgarnet-amphibole) up to 2.067 ‰. Recent ab initio calculations of Zr–O bond force constants in rock-forming phases predict limited inter-mineral Zr isotope fractionation in high-temperature environments, suggesting that the large fractionations we observe are not the product of vibrational equilibrium processes. Instead, we propose a scenario in which large Zr isotopic fractionations develop kinetically, induced by sub-solidus Zr diffusion between coexisting phases via changes in Zr distribution coefficients that arise from changes in temperature. Altogether, Zr isotope variability in this calc-alkaline continental arc setting exhibits no correlation with indices of magmatic differentiation (e.g., Mg#, SiO2), and is not a simple function of fractional crystallization. Furthermore, the garnet clinopyroxenite cumulates studied here represent density-unstable lower arc crust material; consequently, material with isotopically variable δ94/90Zr can be recycled into the mantle as a consequence of lower crustal foundering. 
    more » « less
  2. null (Ed.)
    Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ 94 Zr) and high–spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon–melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation. 
    more » « less
  3. Abstract

    During the differentiation of arc magmas, fractionating liquids follow a series of cotectics, where the co‐crystallization of multiple minerals control the melt compositional trajectories, commonly referred to as liquid lines of descent (LLD). These cotectics are sensitive to intensive properties, including fractionation pressure and melt H2O concentration, and changes in these variables produce systematic differences in the LLDs of arc lavas. Based on a compilation of experimental studies, we develop two major element proxies that exploit differences in LLDs to constrain the fractionation conditions of arc magmas. Near‐primary fractionating magmas evolve along the olivine‐clinopyroxene cotectic, which is pressure‐sensitive. We use this sensitivity to develop a proxy for early fractionation pressure based on the normative mineral compositions of melts with 8 ± 1 wt.% MgO. Fractionation in more evolved magmas is controlled by the clinopyroxene‐plagioclase cotectic, which is strongly sensitive to magmatic H2O contents. We use this relationship to develop an H2O proxy that is calibrated to the normative mineral components of melts with 2–4 wt.% MgO. These two proxies provide new tools for estimating the variations in pressure and temperature between magmatic systems. We applied these proxies to compiled major element data and phenocryst assemblages from modern volcanic arcs and show that in island arcs early fractionation is relatively shallow and magmas are dominantly H2O‐poor, while continental arcs are characterized by more hydrous and deeper early fractionation. These differences likely reflect variations in the relative contributions of decompression and flux melting in combination with distinct upper plate controls on arc melt generation.

     
    more » « less
  4. Most known porphyry Cu±Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ∼2·7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu±Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ∼2·74 Ga, ∼2·70 Ga, and∼2·69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t)±SD values of 4·5±0·3, 4·2±0·6, and 4·3±0·4, and δ18O±SD values of 5·40±0·11  , 3·91±0·13  , and 4·83±0·12  , respectively. These isotopic signatures indicate that, although these magmas are mantle-sourced with minimal crustal contamination, for the St- Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e. zircon, amphibole, apatite, and magnetite–ilmenite) that survived variable alteration and metamorphism (up to greenschist facies) were used for estimating fO2 of the causative magmas. Estimation of magmatic fO2 values, reported relative to the fayalite–magnetite–quartz buffer as  FMQ, using zircon geochemistry indicates that the fO2 values of the St-Jude, Côté Gold, and Clifford magmas increase from  FMQ –0·3±0·6 to  FMQ +0·8±0·4 and to  FMQ +1·2±0·4, respectively. In contrast, amphibole chemistry yielded systematically higher fO2 values of  FMQ +1·6±0·3 and  FMQ +2·6±0·1 for Côté Gold and Clifford, respectively, which are consistent with previous studies that indicate that amphibole may overestimate the fO2 of intrusive rocks by up to 1 log unit. Micro X-ray absorption near edge structure (μ-XANES) spectrometric determination of sulfur (i.e. S6+/ S) in primary apatite yielded ≥ FMQ−0·3 and FMQ+1·4–1·8 for St-Jude and Clifford, respectively. The magnetite–ilmenite mineral pairs from the Clifford tonalite yielded  FMQ +3·3±1·3 at equilibrium temperatures of 634±21 ◦C, recording the redox state of the late stage of magma crystallization. Electron probe microanalyses revealed that apatite grains from Clifford are enriched in S (up to 0·1 wt%) relative to those of Côté Gold and St-Jude (below the detection limit), which is attributed to either relatively oxidized or sulfur-rich features of the Clifford tonalite. We interpret these results to indicate that the deposits at Côté Gold and Clifford formed from mildly (∼ FMQ +0·8±0·4) to moderately (∼ FMQ +1·5) oxidized magmas where voluminous early sulfide saturation was probably limited, whereas the St-Jude deposit represents a rare case whereby the ingress of externally derived hydrothermal fluids facilitated metal fertility in a relatively reduced magma chamber (∼ FMQ +0). Furthermore, we conclude that variable modes of formation for these deposits and, in addition, the apparent rarity of porphyry-type Cu–Au deposits in the Archean may be attributed to either local restriction of favorable metallogenic conditions, and/or preservation, or an exploration bias. 
    more » « less
  5. Abstract Oxygen fugacity is an important but difficult parameter to constrain for primitive arc magmas. In this study, the partitioning behavior of Fe3+/Fe2+ between amphibole and glass synthesized in piston-cylinder and cold-seal apparatus experiments is developed as an oxybarometer, applicable to magmas ranging from basaltic to dacitic composition. The partitioning of Fe2+ is strongly dependent on melt polymerization; the relative compatibility of Fe2+ in amphibole decreases with increasing polymerization. The Fe2+/Mg distribution coefficient between amphibole and melt is a relatively constant value across all compositions and is, on average, 0.27. The amphibole oxybarometer is applied to amphibole in mafic enclaves, cumulates, and basaltic tephra erupted from Shiveluch volcano in Kamchatka with measured Fe3+/FeTotal. An average Fe3+/Fe2+ amphibole-glass distribution coefficient for basalt is used to convert the Fe3+/FeTotal of amphibole in samples from Shiveluch to magmatic oxygen fugacity relative to NNO. The fO2 of primitive melts at the volcano is approximately NNO+2 and is faithfully recorded in amphibole from an amphibole-rich cumulate and the basaltic tephra. Apparently, higher fO2 recorded by amphibole in mafic enclaves likely results from partial dehydrogenation of amphibole during residence in a shallow andesite storage region. We identify three pulses of mafic magma recharge within two weeks of, a month before, and two to three months before the eruption and find that, at each of these times, the host andesite was recharged by at least two magmas at varying stages of differentiation. Application of the amphibole oxybarometer not only gives insight into magmatic fO2 but also potentially details of shallow magmatic processes. 
    more » « less