Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of origin (MZO) hypothesis, to explore mechanisms underlying latitudinal and elevational gradients of phylogenetic diversity in tree communities. The TNC hypothesis posits that most lineages originate in warmer, wetter, and less seasonal environments in the tropics and rarely colonize colder, drier, and more seasonal environments outside of the tropical lowlands, leading to higher phylogenetic diversity at lower latitudes and elevations. In contrast, the MZO hypothesis posits that lineages also originate in temperate environments and readily colonize similar environments in the tropical highlands, leading to lower phylogenetic diversity at lower latitudes and elevations. We tested these phylogenetic predictions using a combination of computer simulations and empirical analyses of tree communities in 245 forest plots located in six countries across the tropical and subtropical Andes. We estimated the phylogenetic diversity for each plot and regressed it against elevation and latitude. Our simulated and empirical results provide strong support for the MZO hypothesis. Phylogenetic diversity among co-occurring tree species increased with both latitude and elevation, suggesting an important influence on the historical dispersal of lineages with temperate origins into the tropical highlands. The mixing of different floras was likely favored by the formation of climatically suitable corridors for plant migration due to the Andean uplift. Accounting for the evolutionary history of plant communities helps to advance our knowledge of the drivers of tree community assembly along complex climatic gradients, and thus their likely responses to modern anthropogenic climate change. 
                        more » 
                        « less   
                    
                            
                            The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales
                        
                    
    
            The tropical conservatism hypothesis (TCH) posits that the latitudinal gradient in biological diversity arises because most extant clades of animals and plants originated when tropical environments were more widespread and because the colonization of colder and more seasonal temperate environments is limited by the phylogenetically conserved environmental tolerances of these tropical clades. Recent studies have claimed support of the TCH, indicating that temperate plant diversity stems from a fewmore recently derived lineages that are nested within tropical clades, with the colonization of the temperate zone being associated with key adaptations to survive colder temperatures and regular freezing. Drought, however, is an additional physiological stress that could shape diversity gradients. Here, we evaluate patterns of evolutionary diversity in plant assemblages spanning the full extent of climatic gradients in North and South America. We find that in both hemispheres, extratropical dry biomes house the lowest evolutionary diversity, while tropical moist forests and many temperatemixed forests harbor the highest. Together, our results support a more nuanced view of the TCH, with environments that are radically different from the ancestral niche of angiosperms having limited, phylogenetically clustered diversity relative to environments that show lower levels of deviation from this niche. Thus, we argue that ongoing expansion of arid environments is likely to entail higher loss of evolutionary diversity not just in the wet tropics but in many extratropical moist regions as well. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1934790
- PAR ID:
- 10294223
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences of the United States of America
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species-rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain-influenced and lowland Amazonian sister pairs inferred from a 756-gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 My with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors don’t differ between mountain-influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.more » « less
- 
            Abstract AimThe latitudinal diversity gradient of increasing species richness from poles to equator is one of the most striking and pervasive spatial patterns of biodiversity. Climate appears to have been key to the formation of the latitudinal diversity gradient, but the processes through which climate shaped species richness remain unclear. We tested predictions of the time for speciation, carrying capacity and diversification rate latitudinal diversity gradient hypotheses in a trans‐marine/freshwater clade of fishes. LocationGlobal in marine and freshwater environments. TaxonClupeiformes (anchovies, herrings, sardines and relatives). MethodsWe tested predictions of latitudinal diversity gradient hypotheses using a molecular phylogeny, species distribution data and phylogenetic comparative approaches. To test the time for speciation hypothesis, we conducted ancestral state reconstructions to infer the ages of temperate, subtropical and tropical lineages and frequency of evolutionary transitions between climates. We tested the carry capacity hypothesis by characterizing changes in net diversification rates through time. To test the diversification rate hypothesis, we qualitatively compared the diversification rates of temperate, subtropical and tropical lineages and conducted statistical tests for associations between latitude and diversification rates. ResultsWe identified four transitions to temperate climates and two transitions out of temperate climates. We found no differences in diversification rates among temperate and tropical clupeiforms. Net diversification rates remained positive in crown Clupeiformes since their origin ~150 Ma in both tropical and temperate lineages. Climate niche characters exhibited strong phylogenetic signal. All temperate clupeiform lineages arose <50 Ma, after the Early Eocene Climatic Optimum. Main conclusionsOur results support the time for speciation hypothesis, which proposes that climate niche conservatism and fluctuations in the extent of temperate climates limited the time for species to accumulate in temperate climates, resulting in the latitudinal diversity gradient. We found no support for the carrying capacity or diversification rate hypotheses.more » « less
- 
            Barrow, Lisa (Ed.)Abstract Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages (families and subfamilies) and the timing of their origin are not sufficiently understood to explain how this tropical clade has been able to colonize the temperate zone. Here, we used transcriptomics and divergence time dating to investigate the phylogeny of Gonyleptoidea. Our results support the monophyly of Gonyleptoidea and all of its families with more than one species represented. Resolution within Gonyleptidae s.s. is achieved for many clades, but some subfamilies are not monophyletic (Gonyleptinae, Mitobatinae, and Pachylinae), requiring taxonomic revision. Our data show evidence for one colonization of today’s temperate zone early in the history of Gonyleptidae, during the Paleogene, at a time when the Neotropical area extended poleward into regions now considered temperate. This provides a possible mechanism for the colonization of the extratropics by a tropical group following the Paleocene–Eocene Thermal Maximum, explaining how latitudinal diversity gradients can be established. Taxonomic acts: Ampycidae Kury 2003 is newly ranked as family; Neosadocus Mello-Leitão is transferred to Progonyleptoidellinae (new subfamilial assignment). [Arachnids; biogeography; phylogenomics; transcriptomics.]more » « less
- 
            Emerson, B. (Ed.)High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species‐rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain‐influenced and lowland Amazonian sister pairs inferred from a 756‐gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain‐influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    