skip to main content

Title: The capability of the Australian Square Kilometre Array Pathfinder to detect prompt radio bursts from neutron star mergers
Abstract We discuss observational strategies to detect prompt bursts associated with gravitational wave (GW) events using the Australian Square Kilometre Array Pathfinder (ASKAP). Many theoretical models of binary neutron stars mergers predict that bright, prompt radio emission would accompany the merger. The detection of such prompt emission would greatly improve our knowledge of the physical conditions, environment, and location of the merger. However, searches for prompt emission are complicated by the relatively poor localisation for GW events, with the 90% credible region reaching hundreds or even thousands of square degrees. Operating in fly’s eye mode, the ASKAP field of view can reach $\sim1\,000$ deg $^2$ at $\sim$ $888\,{\rm MHz}$ . This potentially allows observers to cover most of the 90% credible region quickly enough to detect prompt emission. We use skymaps for GW170817 and GW190814 from LIGO/Virgo’s third observing run to simulate the probability of detecting prompt emission for GW events in the upcoming fourth observing run. With only alerts released after merger, we find it difficult to slew the telescope sufficiently quickly as to capture any prompt emission. However, with the addition of alerts released before merger by negative-latency pipelines, we find that it should be possible to search more » for nearby, bright prompt fast radio burst-like emission from GW events. Nonetheless, the rates are low: we would expect to observe $\sim$ 0.012 events during the fourth observing run, assuming that the prompt emission is emitted microseconds around the merger. « less
Authors:
; ; ; ;
Award ID(s):
1816492
Publication Date:
NSF-PAR ID:
10294250
Journal Name:
Publications of the Astronomical Society of Australia
Volume:
37
ISSN:
1323-3580
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The detection of a neutron star merger by the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo gravitational wave detectors, and the subsequent detection of an electromagnetic counterpart have opened a new era of transient astronomy. With upgrades to the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo detectors and new detectors coming online in Japan and India, neutron star mergers will be detected at a higher rate in the future, starting with the O3 observing run which will begin in early 2019. The detection of electromagnetic emission from these mergers provides vital information about merger parameters and allows independent measurement of the Hubble constant. The Australian Square Kilometre Array Pathfinder is expected to become fully operational in early 2019, and its 30 deg 2 field of view will enable us to rapidly survey large areas of sky. In this work we explore prospects for detecting both prompt and long-term radio emission from neutron star mergers with Australian Square Kilometre Array Pathfinder and determine an observing strategy that optimises the use of telescope time. We investigate different strategies to tile the sky with telescope pointings in order to detect radio counterparts with limited observing time, using 475 simulated gravitationalmore »wave events. Our results show a significant improvement in observing efficiency when compared with a naïve strategy of covering the entire localisation above some confidence threshold, even when achieving the same total probability covered.« less
  2. Abstract We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$ -steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m −2 within 1 $^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be amore »singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.« less
  3. We have conducted the most sensitive low frequency (below 100 MHz) search to date for prompt, low-frequency radio emission associated with short-duration gamma-ray bursts (GRBs), using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). The OVRO-LWA's nearly full-hemisphere field-of-view (∼20,000 square degrees) allows us to search for low-frequency (sub-100 MHz) counterparts for a large sample of the subset of GRB events for which prompt radio emission has been predicted. Following the detection of short GRB 170112A by Swift, we used all-sky OVRO-LWA images spanning one hour prior to and two hours following the GRB event to search for a transient source coincident with the position of GRB 170112A. We detect no transient source, with our most constraining 1σ flux density limit of 650 mJy for frequencies spanning 27 MHz−84 MHz. We place constraints on a number of models predicting prompt, low-frequency radio emission accompanying short GRBs and their potential binary neutron star merger progenitors, and place an upper limit of Lradio/Lγ≲7×10−16 on the fraction of energy released in the prompt radio emission. These observations serve as a pilot effort for a program targeting a wider sample of both short and long GRBs with the OVRO-LWA, including bursts with confirmedmore »redshift measurements which are critical to placing the most constraining limits on prompt radio emission models, as well as a program for the follow-up of gravitational wave compact binary coalescence events detected by advanced LIGO and Virgo.« less
  4. ABSTRACT The detection of gravitational waves from a neutron star merger, GW170817, marked the dawn of a new era in time-domain astronomy. Monitoring of the radio emission produced by the merger, including high-resolution radio imaging, enabled measurements of merger properties including the energetics and inclination angle. In this work, we compare the capabilities of current and future gravitational wave facilities to the sensitivity of radio facilities to quantify the prospects for detecting the radio afterglows of gravitational wave events. We consider three observing strategies to identify future mergers – wide field follow-up, targeting galaxies within the merger localization and deep monitoring of known counterparts. We find that while planned radio facilities like the Square Kilometre Array will be capable of detecting mergers at gigaparsec distances, no facilities are sufficiently sensitive to detect mergers at the range of proposed third-generation gravitational wave detectors that would operate starting in the 2030s.
  5. Abstract Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetarmore »for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars ( $\epsilon_r\lesssim10^{-4}$ ), the fraction of magnetic energy in the GRB jet ( $\epsilon_B\lesssim2\times10^{-4}$ ), and the radio emission efficiency of the magnetar remnant ( $\epsilon_r\lesssim10^{-3}$ ). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of $z\sim0.6$ . Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.« less