skip to main content

Title: An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers

The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg2seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infraredY,J, and short-Hbands (0.9–1.7μm, toJAB= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg2, WINTER will be sensitive to more than 10% of the more » kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community.

« less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 152
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at the Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r -process material in binary neutron star (BNS) merger remnants detected by LIGO. We describe the scientific goals and survey design of the WINTER instrument. With a dedicated trigger and the ability to map the full LIGO O4 positional error contour in the IR to a distance of 190 Mpc within four hours, WINTER will be a powerful kilonova discovery engine and tool for multi-messenger astrophysics investigations. In addition to follow-up observations of merging binaries, WINTER will facilitate a wide range of time-domain astronomical observations, all the while building up a deep coadded image of the static infrared sky suitable for survey science. WINTER's custom camera features six commercial large-format Indium Gallium Arsenide (InGaAs) sensors and a tiled optical system which covers a <1-square-degree field of view with 90% fill factor. The instrument observes in Y, J and a short-H (Hs) band tuned to the long-wave cutoff of the InGaAs sensors, covering amore »wavelength range from 0.9 - 1.7 microns. We present the design of the WINTER instrument and current progress towards final integration at the Palomar Observatory and commissioning planned for mid-2021.« less
  2. Abstract

    Despite recent progress, the astrophysical channels responsible for rapid neutron capture (r-process) nucleosynthesis remain an unsettled question. Observations of the kilonova following the gravitational-wave-detected neutron star merger GW170817 established mergers as one site of ther-process, but additional sources may be needed to fully explainr-process enrichment in the universe. One intriguing possibility is that rapidly rotating massive stars undergoing core collapse launchr-process-rich outflows off the accretion disks formed from their infalling matter. In this scenario,r-process winds are one component of the supernova (SN) ejecta produced by “collapsar” explosions. We present the first systematic study of the effects ofr-process enrichment on the emission from collapsar-generated SNe. We semianalytically modelr-process SN emission from explosion out to late times and determine its distinguishing features. The ease with whichr-process SNe can be identified depends on how effectively wind material mixes into the initiallyr-process-free outer layers of the ejecta. In many cases, enrichment produces a near-infrared (NIR) excess that can be detected within ∼75 days of explosion. We also discuss optimal targets and observing strategies for testing ther-process collapsar theory, and find that frequent monitoring of optical and NIR emission from high-velocity SNe in the first few months after explosion offers a reasonable chance ofmore »success while respecting finite observing resources. Such early identification ofr-process collapsar candidates also lays the foundation for nebular-phase spectroscopic follow-up in the NIR and mid-infrared, for example, with the James Webb Space Telescope.

    « less
  3. Direct detection of gravitational waves (GWs) on 17 August 2017, propagating from a binary neutron star merger, or a “kilonova”, opened the era of multimessenger astronomy. The ejected material from neutron star mergers, or “kilonova”, is a good candidate for optical and near infrared follow-up observations after the detection of GWs. The kilonova from the ejecta of GW1780817 provided the first evidence for the astrophysical site of the synthesis of heavy nuclei through the rapid neutron capture process or r-process. Since properties of the emission are largely affected by opacities of the ejected material, enhancements in the available r-process data is important for neutron star merger modeling. However, given the complexity of the electronic structure of these heavy elements, considerable efforts are still needed to converge to a reliable set of atomic structure data. The aim of this work is to alleviate this situation for low charge state elements in the Os-like isoelectronic sequence. In this regard, the general-purpose relativistic atomic structure packages (GRASP0 and GRASP2K) were used to obtain energy levels and transition probabilities (E1 and M1). We provide line lists and expansion opacities for a range of r-process elements. We focus here on the Os isoelectronic sequence (Osmore »I, Ir II, Pt III, Au IV, Hg V). The results are benchmarked against existing experimental data and prior calculations, and predictions of emission spectra relevant to kilonovae are provided. Fine-structure (M1) lines in the infrared potentially observable by the James Webb Space Telescope are highlighted.« less
  4. Abstract

    Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galacticr-process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out toz∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out toz∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters.

  5. Abstract

    Current and future optical and near-infrared wide-field surveys have the potential to find kilonovae, the optical and infrared counterparts to neutron star mergers, independently of gravitational-wave or high-energy gamma-ray burst triggers. The ability to discover fast and faint transients such as kilonovae largely depends on the area observed, the depth of those observations, the number of revisits per field in a given time frame, and the filters adopted by the survey; it also depends on the ability to perform rapid follow-up observations to confirm the nature of the transients. In this work, we assess kilonova detectability in existing simulations of the Legacy Survey of Space and Time strategy for the Vera C. Rubin Wide Fast Deep survey, with focus on comparing rolling to baseline cadences. Although currently available cadences can enable the detection of >300 kilonovae out to ∼1400 Mpc over the 10 year survey, we can expect only 3–32 kilonovae similar to GW170817 to be recognizable as fast-evolving transients. We also explore the detectability of kilonovae over the plausible parameter space, focusing on viewing angle and ejecta masses. We find that observations in redderizybands are crucial for identification of nearby (within 300 Mpc) kilonovae that could be spectroscopicallymore »classified more easily than more distant sources. Rubin’s potential for serendipitous kilonova discovery could be increased by gain of efficiency with the employment of individual 30 s exposures (as opposed to 2 × 15 s snap pairs), with the addition of red-band observations coupled with same-night observations ingorrbands, and possibly with further development of a new rolling-cadence strategy.

    « less