skip to main content

Title: A search for radio afterglows from gamma-ray bursts with the Australian Square Kilometre Array Pathfinder
ABSTRACT We present a search for radio afterglows from long gamma-ray bursts using the Australian Square Kilometre Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, covering the entire celestial sphere south of declination +41○, and three epochs of the Variables and Slow Transients Pilot Survey (Phase 1), covering ∼5000 square degrees per epoch. The observations we used from these surveys spanned a nine-month period from 2019 April 21 to 2020 January 11. We cross-matched radio sources found in these surveys with 779 well-localized (to ≤15 arcsec) long gamma-ray bursts occurring after 2004 and determined whether the associations were more likely afterglow- or host-related through the analysis of optical images. In our search, we detected one radio afterglow candidate associated with GRB 171205A, a local low-luminosity gamma-ray burst with a supernova counterpart SN 2017iuk, in an ASKAP observation 511 d post-burst. We confirmed this detection with further observations of the radio afterglow using the Australia Telescope Compact Array at 859 and 884 d post-burst. Combining this data with archival data from early-time radio observations, we showed the evolution of the radio spectral energy distribution alone could reveal clear signatures of a wind-like circumburst medium for the burst. Finally, we derived semi-analytical estimates more » for the microphysical shock parameters of the burst: electron power-law index p = 2.84, normalized wind-density parameter A* = 3, fractional energy in electrons ϵe = 0.3, and fractional energy in magnetic fields ϵB = 0.0002. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1816492
Publication Date:
NSF-PAR ID:
10294251
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
2
Page Range or eLocation-ID:
1847 to 1863
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We constrain the Hubble constant H0 using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (‘Macquart’) relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DMhost), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localized to their host galaxies, and 60 unlocalized FRBs from Parkes and ASKAP, our best-fitting value of H0 is calculated to be $73_{-8}^{+12}$ km s−1 Mpc−1. Uncertainties in FRB energetics and DMhost produce larger uncertainties in the inferred value of H0 compared to previous FRB-based estimates. Using a prior on H0 covering the 67–74 km s−1 Mpc−1 range, we estimate a median ${\rm DM}_{\rm host}= 186_{-48}^{+59}\,{\rm pc \, cm^{-3}}$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be log10Emax$=41.26_{-0.22}^{+0.27}$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $\gamma =-0.95_{-0.15}^{+0.18}$. We demonstrate with a samplemore »of 100 mock FRBs that H0 can be measured with an uncertainty of ±2.5 km s−1 Mpc−1, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses.

    « less
  2. Abstract We present new radio and optical data, including very-long-baseline interferometry, as well as archival data analysis, for the luminous, decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron self-absorption peak around 0.3 GHz and a radius of around 1.3 mas (0.5 pc) 26 yr post-discovery, indicating a blastwave energy ∼5 × 10 50 erg. The optical spectrum shows a broad [O iii ] λ 4959,5007 emission line that may indicate collisional excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates, we find that the properties of J1419+3940 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that J1419+3940 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be f b −more »1 ≃ 280 − 200 + 700 , corresponding to an average jet half-opening angle < θ j > ≃ 5 − 2 + 4 degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the Very Large Array, Australian Square Kilometre Array Pathfinder, and MeerKAT will find a handful of J1419+3940-like events over the coming years.« less
  3. Abstract The heaviest elements in the universe are synthesized through rapid neutron capture ( r -process) in extremely neutron-rich outflows. Neutron star mergers were established as an important r -process source through the multimessenger observation of GW170817. Collapsars were also proposed as a potentially major source of heavy elements; however, this is difficult to probe through optical observations due to contamination by other emission mechanisms. Here we present observational constraints on r -process nucleosynthesis by collapsars based on radio follow-up observations of nearby long gamma-ray bursts (GRBs). We make the hypothesis that late-time radio emission arises from the collapsar wind ejecta responsible for forging r -process elements, and consider the constraints that can be set on this scenario using radio observations of a sample of Swift/Burst Alert Telescope GRBs located within 2 Gpc. No radio counterpart was identified in excess of the radio afterglow of the GRBs in our sample. This gives the strictest limit to the collapsar r -process contribution of ≲0.2 M ⊙ for GRB 060505 and GRB 05826, under the models we considered. Our results additionally constrain energy injection by a long-lived neutron star remnant in some of the considered GRBs. While our results are in tensionmore »with collapsars being the majority of r -process production sites, the ejecta mass and velocity profile of collapsar winds, and the emission parameters, are not yet well modeled. As such, our results are currently subject to large uncertainties, but further theoretical work could greatly improve them.« less
  4. Abstract We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$ -steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m −2 within 1 $^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be amore »singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.« less
  5. ABSTRACT We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2 to 1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about 1 min, for a duration of up to 11 h after the burst. The data were searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm−3, and for pulse widths w over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $26 \, {\rm Jy\, ms}\, (w/1\, {\rm ms})^{-1/2}$ for any of the 20 GRBs.