skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A search for radio afterglows from gamma-ray bursts with the Australian Square Kilometre Array Pathfinder
ABSTRACT We present a search for radio afterglows from long gamma-ray bursts using the Australian Square Kilometre Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, covering the entire celestial sphere south of declination +41○, and three epochs of the Variables and Slow Transients Pilot Survey (Phase 1), covering ∼5000 square degrees per epoch. The observations we used from these surveys spanned a nine-month period from 2019 April 21 to 2020 January 11. We cross-matched radio sources found in these surveys with 779 well-localized (to ≤15 arcsec) long gamma-ray bursts occurring after 2004 and determined whether the associations were more likely afterglow- or host-related through the analysis of optical images. In our search, we detected one radio afterglow candidate associated with GRB 171205A, a local low-luminosity gamma-ray burst with a supernova counterpart SN 2017iuk, in an ASKAP observation 511 d post-burst. We confirmed this detection with further observations of the radio afterglow using the Australia Telescope Compact Array at 859 and 884 d post-burst. Combining this data with archival data from early-time radio observations, we showed the evolution of the radio spectral energy distribution alone could reveal clear signatures of a wind-like circumburst medium for the burst. Finally, we derived semi-analytical estimates for the microphysical shock parameters of the burst: electron power-law index p = 2.84, normalized wind-density parameter A* = 3, fractional energy in electrons ϵe = 0.3, and fractional energy in magnetic fields ϵB = 0.0002.  more » « less
Award ID(s):
1816492
PAR ID:
10294251
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1847 to 1863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  2. ABSTRACT We constrain the Hubble constant H0 using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (‘Macquart’) relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DMhost), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localized to their host galaxies, and 60 unlocalized FRBs from Parkes and ASKAP, our best-fitting value of H0 is calculated to be $$73_{-8}^{+12}$$ km s−1 Mpc−1. Uncertainties in FRB energetics and DMhost produce larger uncertainties in the inferred value of H0 compared to previous FRB-based estimates. Using a prior on H0 covering the 67–74 km s−1 Mpc−1 range, we estimate a median $${\rm DM}_{\rm host}= 186_{-48}^{+59}\,{\rm pc \, cm^{-3}}$$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be log10Emax$$=41.26_{-0.22}^{+0.27}$$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $$\gamma =-0.95_{-0.15}^{+0.18}$$. We demonstrate with a sample of 100 mock FRBs that H0 can be measured with an uncertainty of ±2.5 km s−1 Mpc−1, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses. 
    more » « less
  3. ABSTRACT The population of radio-loud stars has to date been studied primarily through either targeted observations of a small number of highly active stars or wide-field, single-epoch surveys that cannot easily distinguish stellar emission from background extragalactic sources. As a result it has been difficult to constrain population statistics such as the surface density and fraction of the population producing radio emission in a particular variable or spectral class. In this paper, we present a sample of 36 radio stars detected in a circular polarization search of the multi-epoch Variables and Slow Transients (VAST) pilot survey with ASKAP at 887.5 MHz. Through repeat sampling of the VAST pilot survey footprint we find an upper limit to the duty cycle of M-dwarf radio bursts of $$8.5 \,\rm {per\,cent}$$, and that at least 10 ± 3 $$\rm {per\,cent}$$ of the population should produce radio bursts more luminous than $$10^{15} \,\rm {erg}\mathrm{s}^{-1} \,\mathrm{Hz}^{-1}$$. We infer a lower limit on the long-term surface density of such bursts in a shallow $$1.25 \,\mathrm{m}\rm {Jy}\rm\ {PSF}^{-1}$$ sensitivity survey of $${9}^{\, +{11}}_{-{7}}\times 10^{-3}$$  $$\,\deg ^{-2}$$ and an instantaneous radio star surface density of 1.7 ± 0.2 × 10−3  $$\,\deg ^{-2}$$ on 12 min time-scales. Based on these rates we anticipate ∼200 ± 50 new radio star detections per year over the full VAST survey and $${41\, 000}^{\, +{10\, 000}}_{-{9\, 000}}$$ in next-generation all-sky surveys with the Square Kilometre Array. 
    more » « less
  4. ABSTRACT We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2 to 1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about 1 min, for a duration of up to 11 h after the burst. The data were searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm−3, and for pulse widths w over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $$26 \, {\rm Jy\, ms}\, (w/1\, {\rm ms})^{-1/2}$$ for any of the 20 GRBs. 
    more » « less
  5. Abstract The number of long gamma-ray bursts (GRBs) known to have occurred in the distant Universe (z > 5) is small (∼15); however, these events provide a powerful way of probing star formation at the onset of galaxy evolution. In this paper, we present the case for GRB 100205A being a largely overlooked high-redshift event. While initially noted as a high-z candidate, this event and its host galaxy have not been explored in detail. By combining optical and near-infrared Gemini afterglow imaging (at t < 1.3 d since burst) with deep late-time limits on host emission from the Hubble Space Telescope, we show that the most likely scenario is that GRB 100205A arose in the range 4 < z < 8. GRB 100205A is an example of a burst whose afterglow, even at ∼1 h post burst, could only be identified by 8-m class IR observations, and suggests that such observations of all optically dark bursts may be necessary to significantly enhance the number of high-redshift GRBs known. 
    more » « less