skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Network Parameter Database False Data Injection Correction Physics-Based Model: A Machine Learning Synthetic Measurement-Based Approach
Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of the system model is the other part of the equation, since almost all applications in power systems heavily depend on the state estimator outputs. While much effort has been given to measurements of false data injection attacks, seldom reported work is found on the broad theme of false data injection on the database of network parameters. State-of-the-art physics-based model solutions correct false data injection on network parameter database considering only available wide-area measurements. In addition, deterministic models are used for correction. In this paper, an overdetermined physics-based parameter false data injection correction model is presented. The overdetermined model uses a parameter database correction Jacobian matrix and a Taylor series expansion approximation. The method further applies the concept of synthetic measurements, which refers to measurements that do not exist in the real-life system. A machine learning linear regression-based model for measurement prediction is integrated in the framework through deriving weights for synthetic measurements creation. Validation of the presented model is performed on the IEEE 118-bus system. Numerical results show that the approximation error is lower than the state-of-the-art, while providing robustness to the correction process. Easy-to-implement model on the classical weighted-least-squares solution, highlights real-life implementation potential aspects.  more » « less
Award ID(s):
1809739
PAR ID:
10294513
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
11
Issue:
17
ISSN:
2076-3417
Page Range / eLocation ID:
8074
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Power system state estimation is an important component of the status and healthiness of the underlying electric power grid real-time monitoring. However, such a component is prone to cyber-physical attacks. The majority of research in cyber-physical power systems security focuses on detecting measurements False-Data Injection attacks. While this is important, measurement model parameters are also a most important part of the state estimation process. Measurement model parameters though, also known as static-data, are not monitored in real-life applications. Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents a two-step process towards simultaneous false-data injection security: detection and correction. Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear model with no guarantee of optimal solution. This paper presents a linear programming method to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level model integrates the detection and correction steps. Temporal and spatio characteristics of the power grid are used to provide an online detection and correction tool for attacks pertaining the parameters of the measurement model. The presented model is implemented on the IEEE 118 bus system. Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-implement model, built on the classical weighted least squares solution, without hard-to-derive parameters, highlights potential aspects towards real-life applications. 
    more » « less
  2. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks. 
    more » « less
  3. Abstract Smart Grid (SG) research and development has drawn much attention from academia, industry and government due to the great impact it will have on society, economics and the environment. Securing the SG is a considerably significant challenge due the increased dependency on communication networks to assist in physical process control, exposing them to various cyber‐threats. In addition to attacks that change measurement values using False Data Injection (FDI) techniques, attacks on the communication network may disrupt the power system's real‐time operation by intercepting messages, or by flooding the communication channels with unnecessary data. Addressing these attacks requires a cross‐layer approach. In this paper a cross‐layered strategy is presented, called Cross‐Layer Ensemble CorrDet with Adaptive Statistics(CECD‐AS), which integrates the detection of faulty SG measurement data as well as inconsistent network inter‐arrival times and transmission delays for more reliable and accurate anomaly detection and attack interpretation. Numerical results show that CECD‐AS can detect multiple False Data Injections, Denial of Service (DoS) and Man In The Middle (MITM) attacks with a high F1‐score compared to current approaches that only use SG measurement data for detection such as the traditional physics‐based State Estimation, ECD‐AS strategy and other machine learning classification‐based detection schemes. 
    more » « less
  4. Controller Area Network (CAN) is the de-facto standard in-vehicle network system. Despite its wide adoption by automobile manufacturers, the lack of security design makes it vulnerable to attacks. For instance, broadcasting packets without authentication allows the impersonation of electronic control units (ECUs). Prior mitigations, such as message authentication or intrusion detection systems, fail to address the compatibility requirement with legacy ECUs, stealthy and sporadic malicious messaging, or guaranteed attack detection. We propose a novel authentication system called ShadowAuth that overcomes the aforementioned challenges by offering backward-compatible packet authentication to ECUs without requiring ECU firmware source code. Specifically, our authentication scheme provides transparent CAN packet authentication without modifying existing CAN packet definitions (e.g., J1939) via automatic ECU firmware instrumentation technique to locate CAN packet transmission code, and instrument authentication code based on the CAN packet behavioral transmission patterns. ShadowAuth enables vehicles to detect state-of-the-art CAN attacks, such as bus-off and packet injection, responsively within 60ms without false positives. ShadowAuth provides a sound and deployable solution for real-world ECUs. 
    more » « less
  5. Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the chi-squared-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system. 
    more » « less