skip to main content

Title: A Network Parameter Database False Data Injection Correction Physics-Based Model: A Machine Learning Synthetic Measurement-Based Approach
Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of the system model is the other part of the equation, since almost all applications in power systems heavily depend on the state estimator outputs. While much effort has been given to measurements of false data injection attacks, seldom reported work is found on the broad theme of false data injection on the database of network parameters. State-of-the-art physics-based model solutions correct false data injection on network parameter database considering only available wide-area measurements. In addition, deterministic models are used for correction. In this paper, an overdetermined physics-based parameter false data injection correction model is presented. The overdetermined model uses a parameter database correction Jacobian matrix and a Taylor series expansion approximation. The method further applies the concept of synthetic measurements, which refers to measurements that do not exist in the real-life system. A machine learning linear regression-based model for measurement prediction is integrated in the framework through deriving weights for synthetic measurements creation. Validation of the presented model is performed on more » the IEEE 118-bus system. Numerical results show that the approximation error is lower than the state-of-the-art, while providing robustness to the correction process. Easy-to-implement model on the classical weighted-least-squares solution, highlights real-life implementation potential aspects. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Applied Sciences
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Power system state estimation is an important component of the status and healthiness of the underlying electric power grid real-time monitoring. However, such a component is prone to cyber-physical attacks. The majority of research in cyber-physical power systems security focuses on detecting measurements False-Data Injection attacks. While this is important, measurement model parameters are also a most important part of the state estimation process. Measurement model parameters though, also known as static-data, are not monitored in real-life applications. Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents a two-step process towards simultaneous false-data injection security: detection and correction. Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear model with no guarantee of optimal solution. This paper presents a linear programming method to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level model integrates the detection and correction steps. Temporal and spatio characteristics of the power grid are used to provide an online detection and correction tool for attacks pertaining the parameters of the measurement model. The presented model is implemented on the IEEE 118more »bus system. Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-implement model, built on the classical weighted least squares solution, without hard-to-derive parameters, highlights potential aspects towards real-life applications.« less
  2. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms amore »single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks.« less
  3. Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strong Quality-of-Control (QoC) guarantees even in the presence of false-data injection attacks, such as Man-in-the-Middle (MitM) attacks. Consequently, in this work, we focus on integrating security into existing resource-constrained CPS, in order to protect against MitM attacks on a system where a set of control tasks communicates over a real-time network with system sensors and actuators. We introduce a design-time methodology that incorporates requirements for QoC in the presence of attacks into end-to-end timing constraints for real-time control transactions, which include data acquisition and authentication, real-time network messages, and control tasks. This allows us to formulate a mixed integer linear programming-basedmore »method for direct synthesis of schedulable tasks and message parameters (i.e., deadlines and offsets) that do not violate timing requirements for the already deployed controllers, while adding a sufficient level of protection against network-based attacks; specifically, the synthesis method also provides suitable intermittent authentication policies that ensure the desired QoC levels under attack. To additionally reduce the security-related bandwidth overhead, we propose the use of cumulative message authentication at time instances when the integrity of messages from subsets of sensors should be ensured. Furthermore, we introduce a method for the opportunistic use of the remaining resources to further improve the overall QoC guarantees while ensuring system (i.e., task and message) schedulability. Finally, we demonstrate applicability and scalability of our methodology on synthetic automotive systems as well as a real-world automotive case-study.« less
  4. Controller Area Network (CAN) is the de-facto standard in-vehicle network system. Despite its wide adoption by automobile manufacturers, the lack of security design makes it vulnerable to attacks. For instance, broadcasting packets without authentication allows the impersonation of electronic control units (ECUs). Prior mitigations, such as message authentication or intrusion detection systems, fail to address the compatibility requirement with legacy ECUs, stealthy and sporadic malicious messaging, or guaranteed attack detection. We propose a novel authentication system called ShadowAuth that overcomes the aforementioned challenges by offering backward-compatible packet authentication to ECUs without requiring ECU firmware source code. Specifically, our authentication scheme provides transparent CAN packet authentication without modifying existing CAN packet definitions (e.g., J1939) via automatic ECU firmware instrumentation technique to locate CAN packet transmission code, and instrument authentication code based on the CAN packet behavioral transmission patterns. ShadowAuth enables vehicles to detect state-of-the-art CAN attacks, such as bus-off and packet injection, responsively within 60ms without false positives. ShadowAuth provides a sound and deployable solution for real-world ECUs.
  5. Optimal Power Flow (OPF) is a crucial part of the Energy Management System (EMS) as it determines individual generator outputs that minimize generation cost while satisfying transmission, generation, and system level operating constraints. OPF relies on a core EMS routine, namely state estimation, which computes system states, principally bus voltages/phase angles at the buses. However, state estimation is vulnerable to false data injection attacks in which an adversary can alter certain measurements to corrupt the estimator's solution without being detected. It is also shown that a stealthy attack on state estimation can increase the OPF cost. However, the impact of stealthy attacks on the economic and secure operation of the system cannot be comprehensively analyzed due to the very large size of the attack space. In this paper, we present a hybrid framework that combines formal analytics with Simulink-based system modeling to investigate the feasibility of stealthy attacks and their influence on OPF in a time-efficient manner. The proposed approach is illustrated on synthetic case studies demonstrating the impact of stealthy attacks in different attack scenarios. We also evaluate the impact analysis time by running experiments on standard IEEE test cases and the results show significant scalability of the framework.