skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1809739

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Smart Grid (SG) research and development has drawn much attention from academia, industry and government due to the great impact it will have on society, economics and the environment. Securing the SG is a considerably significant challenge due the increased dependency on communication networks to assist in physical process control, exposing them to various cyber‐threats. In addition to attacks that change measurement values using False Data Injection (FDI) techniques, attacks on the communication network may disrupt the power system's real‐time operation by intercepting messages, or by flooding the communication channels with unnecessary data. Addressing these attacks requires a cross‐layer approach. In this paper a cross‐layered strategy is presented, called Cross‐Layer Ensemble CorrDet with Adaptive Statistics(CECD‐AS), which integrates the detection of faulty SG measurement data as well as inconsistent network inter‐arrival times and transmission delays for more reliable and accurate anomaly detection and attack interpretation. Numerical results show that CECD‐AS can detect multiple False Data Injections, Denial of Service (DoS) and Man In The Middle (MITM) attacks with a high F1‐score compared to current approaches that only use SG measurement data for detection such as the traditional physics‐based State Estimation, ECD‐AS strategy and other machine learning classification‐based detection schemes. 
    more » « less
  2. This work is a survey of current trends in applications of PMUs. PMUs have the potential to solve major problems in the areas of power system estimation, protection, and stability. A variety of methods are being used for these purposes, including statistical techniques, mathematical transformations, probability, and AI. The results produced by the techniques reviewed in this work are promising, but there is work to be performed in the context of implementation and standardization. As the smart grid initiative continues to advance, the number of intelligent devices monitoring the power grid continues to increase. PMUs are at the center of this initiative, and as a result, each year more PMUs are deployed across the grid. Since their introduction, myriad solutions based on PMU-technology have been suggested. The high sampling rates and synchronized measurements provided by PMUs are expected to drive significant advancements across multiple fields, such as the protection, estimation, and control of the power grid. This work offers a review of contemporary research trends and applications of PMU technology. Most solutions presented in this work were published in the last five years, and techniques showing potential for significant impact are highlighted in greater detail. Being a relatively new technology, there are several issues that must be addressed before PMU-based solutions can be successfully implemented. This survey found that key areas where improvements are needed include the establishment of PMU-observability, data processing algorithms, the handling of heterogeneous sampling rates, and the minimization of the investment in infrastructure for PMU communication. Solutions based on Bayesian estimation, as well as those having a distributed architectures, show great promise. The material presented in this document is tailored to both new researchers entering this field and experienced researchers wishing to become acquainted with emerging trends. 
    more » « less
  3. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks. 
    more » « less
  4. High impedance faults present unique challenges for power system protection engineers. The first challenge is the detection of the fault, given the low current magnitudes. The second challenge is to locate the fault to allow corrective measures to be taken. Corrective actions are essential as they mitigate safety hazards and equipment damage. The problem of high impedance fault detection and location is not a new one, and despite the safety and reliability implications, relatively few efforts have been made to find a general solution. This work presents a hybrid data driven and analytical-based model for high impedance fault detection in distribution systems. The first step is to estimate a state space model of the power line being monitored. From the state space model, eigenvalues are calculated, and their dynamic behavior is used to develop zones of protection. These zones of protection are generated analytically using machine learning tools. High impedance faults are detected as they drive the eigenvalues outside of their zones. A metric called eigenvalue drift coefficient was formulated in this work to facilitate the generalization of this solution. The performance of this technique is evaluated through case studies based on the IEEE 5-Bus system modeled in Matlab. Test results are encouraging indicating potential for real-life applications. 
    more » « less
  5. null (Ed.)