skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ObfusX: Routing Obfuscation with Explanatory Analysis of a Machine Learning Attack
This is the first work that incorporates recent advancements in "explainability" of machine learning (ML) to build a routing obfuscator called ObfusX. We adopt a recent metric—the SHAP value— which explains to what extent each layout feature can reveal each unknown connection for a recent ML-based split manufacturing attack model. The unique benefits of SHAP-based analysis include the ability to identify the best candidates for obfuscation, together with the dominant layout features which make them vulnerable. As a result, ObfusX can achieve better hit rate (97% lower) while perturbing significantly fewer nets when obfuscating using a via perturbation scheme, compared to prior work. When imposing the same wirelength limit using a wire lifting scheme, ObfusX performs significantly better in performance metrics (e.g., 2.4 times more reduction on average in percentage of netlist recovery).  more » « less
Award ID(s):
1812600
PAR ID:
10294537
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)
Page Range / eLocation ID:
548-554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The abundant post-earthquake data from the Canterbury, New Zealand (NZ) area is poised for use with machine learning (ML) to further advance our ability to better predict and understand the effects of liquefaction. Liquefaction manifestation is one of the identifiable effects of liquefaction, a nonlinear phenomenon that is still not well understood. ML algorithms are often termed as “black-box” models that have little to no explainability for the resultant predictions, making them difficult for use in practice. With the SHapley Additive exPlanations (SHAP) algorithm wrapper, mathematically backed explanations can be fit to the model to track input feature influences on the final prediction. In this paper, Random Forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric classification model, then SHAP is applied to calculate explanations for the predictions at a global and local feature scale. The RF model hyperparameters are optimized with a two-step grid search and a five-fold cross-validation to avoid overfitting. The overall model accuracy is 71% over six ordinal categories predicting the Canterbury Earthquake Sequence measurements from 2010, 2011, and 2016. Insights from the SHAP application onto the RF model include the influences of PGA, GWT depths, and SBTs for each ordinal class prediction. This preliminary exploration using SHAP can pave the way for both reinforcing the performance of current ML models by comparing to previous knowledge and using it as a discovery tool for identifying which research areas are pertinent to unlocking more understanding of liquefaction mechanics. 
    more » « less
  2. This paper is the first to analyze the security of split manufacturing using machine learning (ML), based on data collected from layouts provided by industry, with eight routing metal layers and significant variation in wire size and routing congestion across the layers. Many types of layout features are considered in our ML model, including those obtained from placement, routing, and cell sizes. Since the runtime cost of our basic ML procedure becomes prohibitively large for lower layers, we propose novel techniques to make it scalable with little sacrifice in the effectiveness of the attack. Moreover, we further improve the performance in the top routing layer by making use of higher quality training samples and by exploiting the routing convention. We also propose a validation-based proximity attack procedure, which generally outperforms our recent prior work. In the experiments, we analyze the ranking of the features used in our ML model and show how features vary in importance when moving to the lower layers. We provide comprehensive evaluation and comparison of our model with different configurations and demonstrate dramatically better performance of attacks compared to the prior work. 
    more » « less
  3. Soil mixing is a ground improvement method that consists of mixing cementitious binders with soil in-situ to create soilcrete. A key parameter in the design and construction of this method is the Unconfined Compressive Strength (UCS) of the soilcrete after a given curing time. This paper explores the intersection of Machine Learning (ML) with geotechnical engineering and soilcrete applications. A database of soilcrete UCS and site/soil/means/methods metadata is compiled from recent projects in the western United States and leveraged to explore UCS prediction with the eXtreme Gradient Boosting (XGBoost) ML algorithm which resulted in a ML model with a R2 value of 88%. To achieve insights from the ML model, the Explainable ML model SHapley Additive exPlanations (SHAP) was then applied to the XGBoost model to explain variable importances and influences for the final UCS prediction value. From this ML application, a blueprint of how to scaffold, feature engineer, and prepare soilcrete data for ML is showcased. Furthermore, the insights obtained from the SHAP model can be further pursued in traditional geotechnical research approaches to expand soil mixing knowledge. 
    more » « less
  4. null (Ed.)
    Using machine learning (ML) to develop quantitative structure—activity relationship (QSAR) models for contaminant reactivity has emerged as a promising approach because it can effectively handle non-linear relationships. However, ML is often data-demanding, whereas data scarcity is common in QSAR model development. Here, we proposed two approaches to address this issue: combining small datasets and transferring knowledge between them. First, we compiled four individual datasets for four oxidants, i.e., SO4•-, HClO, O3 and ClO2, each dataset containing a different number of contaminants with their corresponding rate constants and reaction conditions (pH and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors (MD) to represent the contaminants; combined them with ML algorithms to develop individual QSAR models for these four datasets; and interpreted the models by the Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal contaminant representation and the best ML algorithm are dataset dependent. Next, we merged these four datasets and developed a unified model, which showed better predictive performance on the datasets of HClO, O3 and ClO2 because the model ‘corrected’ some wrongly learned effects of several atom groups. We further developed knowledge transfer models based on the second approach, the effectiveness of which depends on if there is consistent knowledge shared between the two datasets as well as the predictive performance of the respective single models. This study demonstrated the benefit of combining small similar datasets and transferring knowledge between them, which can be leveraged to boost the predictive performance of ML-assisted QSAR models. 
    more » « less
  5. Abstract Characterization of material structure with X-ray or neutron scattering using e.g. Pair Distribution Function (PDF) analysis most often rely on refining a structure model against an experimental dataset. However, identifying a suitable model is often a bottleneck. Recently, automated approaches have made it possible to test thousands of models for each dataset, but these methods are computationally expensive and analysing the output, i.e. extracting structural information from the resulting fits in a meaningful way, is challenging. OurMachineLearning basedMotifExtractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses SHAP (SHapley Additive exPlanation) values to identify which model features are important for the fit quality. We use the method for 4 different chemical systems, including disordered nanomaterials and clusters. ML-MotEx opens for a type of modelling where each feature in a model is assigned an importance value for the fit quality based on explainable ML. 
    more » « less