Background:Despite recent advances, patients with heart failure (HF) often experience repeat hospitalizations and worsening clinical trajectories from inadequate decongestion. Evidence-based approaches for optimizing interventions in the acute hospital setting for patients with decompensated HF are needed. We evaluated whether machine learning (ML) models can accurately predict next-day levels for decongestion surrogates in hospitalized HF patients. Hypothesis:ML can accurately predict body weight, hematocrit, creatinine, and potassium values in the next 24 hours in hospitalized HF patients. Methods:We utilized national Veterans Affairs (VA) databases to study all patients admitted with HF from January 2014 to July 2022. Records including at least one value for at least one biomarker of interest (body weight, hematocrit, creatinine, and potassium) were included. Patients were randomly split into training (80%), validation (10%), and test (10%) datasets. We trained a recurrent neural network to predict each biomarker’s value on admission day n+1 using data until day n, simulating a scenario where a clinician monitors response to treatment (e.g., diuresis) over a 24-hour cycle. The model that performed best on the validation set was evaluated on the test set. The R2, mean absolute error (MAE), and feature importance were determined. Results:We identified 589,114 admissions involving 124,163 unique patients. The mean (SD) age on admission was 72 (10) years; 98% were male, 69% were white, and 25% were Black. The performance (R2, MAE) for each biomarker model was as follows: body weight (0.94, 6.15 lb.), creatinine (0.92, 0.21 mg/dL), hematocrit (0.86, 1.7%), and potassium (0.53, 0.27 mmol/L). The top predictive features across all models were intravenous or oral diuretic use, patient age, and diastolic blood pressure. The predicted 24-hour change in each biomarker based on total daily diuretic dose for five representative patients is demonstrated in the Figure. Conclusions:ML can accurately predict the 24-hour body weight, hematocrit, creatinine, and potassium values in hospitalized HF patients, suggesting the potential for AI to guide acute in-hospital management.
more »
« less
Extracting structural motifs from pair distribution function data of nanostructures using explainable machine learning
Abstract Characterization of material structure with X-ray or neutron scattering using e.g. Pair Distribution Function (PDF) analysis most often rely on refining a structure model against an experimental dataset. However, identifying a suitable model is often a bottleneck. Recently, automated approaches have made it possible to test thousands of models for each dataset, but these methods are computationally expensive and analysing the output, i.e. extracting structural information from the resulting fits in a meaningful way, is challenging. OurMachineLearning basedMotifExtractor (ML-MotEx) trains an ML algorithm on thousands of fits, and uses SHAP (SHapley Additive exPlanation) values to identify which model features are important for the fit quality. We use the method for 4 different chemical systems, including disordered nanomaterials and clusters. ML-MotEx opens for a type of modelling where each feature in a model is assigned an importance value for the fit quality based on explainable ML.
more »
« less
- Award ID(s):
- 1922234
- PAR ID:
- 10474231
- Publisher / Repository:
- nature
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Accurate prediction of ligand-receptor binding affinity is crucial in structure-based drug design, significantly impacting the development of effective drugs. Recent advances in machine learning (ML)–based scoring functions have improved these predictions, yet challenges remain in modeling complex molecular interactions. This study introduces the AGL-EAT-Score, a scoring function that integrates extended atom-type multiscale weighted colored subgraphs with algebraic graph theory. This approach leverages the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices to capture high-level details of specific atom pairwise interactions. Evaluated against benchmark datasets such as CASF-2016, CASF-2013, and the Cathepsin S dataset, the AGL-EAT-Score demonstrates notable accuracy, outperforming existing traditional and ML-based methods. The model’s strength lies in its comprehensive similarity analysis, examining protein sequence, ligand structure, and binding site similarities, thus ensuring minimal bias and over-representation in the training sets. The use of extended atom types in graph coloring enhances the model’s capability to capture the intricacies of protein-ligand interactions. The AGL-EAT-Score marks a significant advancement in drug design, offering a tool that could potentially refine and accelerate the drug discovery process. Scientific Contribution The AGL-EAT-Score presents an algebraic graph-based framework that predicts ligand-receptor binding affinity by constructing multiscale weighted colored subgraphs from the 3D structure of protein-ligand complexes. It improves prediction accuracy by modeling interactions between extended atom types, addressing challenges like dataset bias and over-representation. Benchmark evaluations demonstrate that AGL-EAT-Score outperforms existing methods, offering a robust and systematic tool for structure-based drug design.more » « less
-
Abstract Many scientific problems focus on observed patterns of change or on how to design a system to achieve particular dynamics. Those problems often require fitting differential equation models to target trajectories. Fitting such models can be difficult because each evaluation of the fit must calculate the distance between the model and target patterns at numerous points along a trajectory. The gradient of the fit with respect to the model parameters can be challenging to compute. Recent technical advances in automatic differentiation through numerical differential equation solvers potentially change the fitting process into a relatively easy problem, opening up new possibilities to study dynamics. However, application of the new tools to real data may fail to achieve a good fit. This article illustrates how to overcome a variety of common challenges, using the classic ecological data for oscillations in hare and lynx populations. Models include simple ordinary differential equations (ODEs) and neural ordinary differential equations (NODEs), which use artificial neural networks to estimate the derivatives of differential equation systems. Comparing the fits obtained with ODEs versus NODEs, representing small and large parameter spaces, and changing the number of variable dimensions provide insight into the geometry of the observed and model trajectories. To analyze the quality of the models for predicting future observations, a Bayesian‐inspired preconditioned stochastic gradient Langevin dynamics (pSGLD) calculation of the posterior distribution of predicted model trajectories clarifies the tendency for various models to underfit or overfit the data. Coupling fitted differential equation systems with pSGLD sampling provides a powerful way to study the properties of optimization surfaces, raising an analogy with mutation‐selection dynamics on fitness landscapes.more » « less
-
ObjectiveTo define static, dynamic, and cognitive fit and their interactions as they pertain to exosystems and to document open research needs in using these fit characteristics to inform exosystem design. BackgroundInitial exosystem sizing and fit evaluations are currently based on scalar anthropometric dimensions and subjective assessments. As fit depends on ongoing interactions related to task setting and user, attempts to tailor equipment have limitations when optimizing for this limited fit definition. MethodA targeted literature review was conducted to inform a conceptual framework defining three characteristics of exosystem fit: static, dynamic, and cognitive. Details are provided on the importance of differentiating fit characteristics for developing exosystems. ResultsStatic fit considers alignment between human and equipment and requires understanding anthropometric characteristics of target users and geometric equipment features. Dynamic fit assesses how the human and equipment move and interact with each other, with a focus on the relative alignment between the two systems. Cognitive fit considers the stages of human-information processing, including somatosensation, executive function, and motor selection. Human cognitive capabilities should remain available to process task- and stimulus-related information in the presence of an exosystem. Dynamic and cognitive fit are operationalized in a task-specific manner, while static fit can be considered for predefined postures. ConclusionA deeper understanding of how an exosystem fits an individual is needed to ensure good human–system performance. Development of methods for evaluating different fit characteristics is necessary. ApplicationMethods are presented to inform exosystem evaluation across physical and cognitive characteristics.more » « less
-
Abstract BackgroundNew patient referrals are often processed by practice coordinators with little‐to‐no medical background. Treatment delays due to incorrect referral processing, however, have detrimental consequences. Identifying variables that are associated with a higher likelihood of surgical oncological resection may improve patient referral processing and expedite the time to treatment. The study objective is to develop a supervised machine learning (ML) platform that identifies relevant variables associated with head and neck surgical resection. MethodsA retrospective cohort study was conducted on 64 222 patient datapoints from the SEER database. ResultsThe random forest ML model correctly classified patients who were offered head and neck surgery with an 81% accuracy rate. The sensitivity and specificity rates were 86% and 71%. The positive and negative predictive values were 85% and 73%. ConclusionsML modeling accurately predicts head and neck cancer surgery recommendations based on patient and cancer information from a large population‐based dataset. ML adjuncts for referral processing may decrease the time to treatment for patients with cancer.more » « less
An official website of the United States government

