skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Translational invasion ecology: bridging research and practice to address one of the greatest threats to biodiversity
Effective natural resource management and policy is contingent on information generated by research. Conversely, the applicability of research depends on whether it is responsive to the needs and constraints of resource managers and policy makers. However, many scientific fields including invasion ecology suffer from a disconnect between research and practice. Despite strong socio-political imperatives, evidenced by extensive funding dedicated to addressing invasive species, the pairing of invasion ecology with stakeholder needs to support effective management and policy is lacking. As a potential solution, we propose translational invasion ecology (TIE). As an extension of translational ecology, as a framework to increase collaboration among scientists, practitioners, and policy makers to reduce negative impacts of invasive species. As an extension of translational ecology, TIE is an approach that embodies an intentional and inclusive process in which researchers, stakeholders, and decision makers collaborate to develop and implement ecological research via joint consideration of the ecological, sociological, economic, and/or political contexts in order to improve invasive species management. TIE ideally results in improved outcomes as well as shared benefits between researchers and managers. We delineate the steps of our proposed TIE approach and describe successful examples of ongoing TIE projects from the US and internationally. We suggest practical ways to begin incorporating TIE into research and management practices, including supporting boundary-spanning organizations and activities, expanding networks, sharing translational experiences, and measuring outcomes. We find that there is a need for strengthened boundary spanning, as well as funding and recognition for advancing translational approaches. As climate change and globalization exacerbate invasive species impacts, TIE provides a promising approach to generate actionable ecological research while improving outcomes of invasive species management and policy decisions.  more » « less
Award ID(s):
1740267
PAR ID:
10294544
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biological Invasions
ISSN:
1387-3547
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine invasive species can transform coastal ecosystems, yet mitigating their effects can be difficult, and even impractical. Often, marine invasive species are managed at poorly matched spatial scales, and at the same time, rates of spread and establishment are increasing under climate change and can outpace resources available for population suppression. These circumstances challenge traditional conservation goals of maintaining a historic environmental state, especially for a species like the European green crab (Carcinus maenas), a formidable invader with few examples of successful long‐term removal programs.A management paradigm where decision alternatives include resisting or accepting a new ecological trajectory may be needed. We apply mathematical concepts from decision theory to develop a quantitative framework for navigating management decisions in this new resist‐accept paradigm. We develop a model of European green crab growth, removal and colonization, and we find optimal levels of removal effort that minimize both ecological change and removal cost.We establish a benchmark of colonization pressure at which green crab density becomes decoupled from a decision maker's actions, such that population control can no longer shape the invasion trajectory. For informing the decision boundary between resistance and acceptance, our results highlight that a decision maker's understanding of how removal cost scales with removal effort is more important than understanding the density‐impact relationship.We show that assuming stationary system dynamics can result in sub‐optimal levels of species removal effort, highlighting the importance of developing anticipatory management strategies by accounting for non‐stationary dynamics.Policy implications. For marine invasive species that can disperse across long distances and recolonize rapidly after removal, the focus of conservation policy should shift away from understandinghowto resist change to understandingwhen to stopresisting change. Navigating this decision problem involves trade‐offs among competing objectives, highlighting the need for structured approaches to elicit objective weights that reflect the values of the decision maker. For natural resource managers facing possible ecosystem transformation, this decision framework can enable proactive and strategic decisions made under uncertainty in a changing world. 
    more » « less
  2. Global groundwater resources are under strain, with cascading effects on producers, food and fibre production systems, communities and ecosystems. Investments in biophysical research have clarified the challenges, catalysed a proliferation of technological solutions and supported incentivizing individual irrigators to adjust practices. However, groundwater management is fundamentally a governance challenge. The reticence to prioritize building governance capacity represents a critical ‘blind spot’ contributing to a low return on investment for research funding with negative consequences for communities moving closer towards resource depletion. In this Perspective, we recommend shifts in research, extension and policy priorities to build polycentric governance capacity and strategic planning tools, and to reorient priorities to sustaining aquifer-dependent communities in lieu of maximizing agricultural production at the scale of individual farm operations. To achieve these outcomes, groundwater governance needs to be not only prioritized but also democratized. 
    more » « less
  3. Haddon, Lindsay (Ed.)
    Abstract Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human–induced environmental change; (iii) human–wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions. 
    more » « less
  4. Abstract Models that are both spatially and temporally dynamic are needed to forecast where and when non-native pests and pathogens are likely to spread, to provide advance information for natural resource managers. The potential US range of the invasive spotted lanternfly (SLF, Lycorma delicatula ) has been modeled, but until now, when it could reach the West Coast’s multi-billion-dollar fruit industry has been unknown. We used process-based modeling to forecast the spread of SLF assuming no treatments to control populations occur. We found that SLF has a low probability of first reaching the grape-producing counties of California by 2027 and a high probability by 2033. Our study demonstrates the importance of spatio-temporal modeling for predicting the spread of invasive species to serve as an early alert for growers and other decision makers to prepare for impending risks of SLF invasion. It also provides a baseline for comparing future control options. 
    more » « less
  5. Abstract River managers strive to use the best available science to sustain biodiversity and ecosystem function. To achieve this goal requires consideration of processes at different scales. Metacommunity theory describes how multiple species from different communities potentially interact with local‐scale environmental drivers to influence population dynamics and community structure. However, this body of knowledge has only rarely been used to inform management practices for river ecosystems. In this article, we present a conceptual model outlining how the metacommunity processes of local niche sorting and dispersal can influence the outcomes of management interventions and provide a series of specific recommendations for applying these ideas as well as research needs. In all cases, we identify situations where traditional approaches to riverine management could be enhanced by incorporating an understanding of metacommunity dynamics. A common theme is developing guidelines for assessing the metacommunity context of a site or region, evaluating how that context may affect the desired outcome, and incorporating that understanding into the planning process and methods used. To maximize the effectiveness of management activities, scientists, and resource managers should update the toolbox of approaches to riverine management to reflect theoretical advances in metacommunity ecology. This article is categorized under:Water and Life > Nature of Freshwater EcosystemsWater and Life > Conservation, Management, and AwarenessWater and Life > Methods 
    more » « less