Abstract Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments. 
                        more » 
                        « less   
                    
                            
                            One hundred research questions in conservation physiology for generating actionable evidence to inform conservation policy and practice
                        
                    
    
            Abstract Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human–induced environmental change; (iii) human–wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10249660
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Haddon, Lindsay
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Conservation Physiology
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2051-1434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Research on the ecology of fear has highlighted the importance of perceived risk from predators and humans in shaping animal behavior and physiology, with potential demographic and ecosystem-wide consequences. Despite recent conceptual advances and potential management implications of the ecology of fear, theory and conservation practices have rarely been linked. Many challenges in animal conservation may be alleviated by actively harnessing or compensating for risk perception and risk avoidance behavior in wild animal populations. Integration of the ecology of fear into conservation and management practice can contribute to the recovery of threatened populations, human–wildlife conflict mitigation, invasive species management, maintenance of sustainable harvest and species reintroduction plans. Here, we present an applied framework that links conservation interventions to desired outcomes by manipulating ecology of fear dynamics. We discuss how to reduce or amplify fear in wild animals by manipulating habitat structure, sensory stimuli, animal experience (previous exposure to risk) and food safety trade-offs to achieve management objectives. Changing the optimal decision-making of individuals in managed populations can then further conservation goals by shaping the spatiotemporal distribution of animals, changing predation rates and altering risk effects that scale up to demographic consequences. We also outline future directions for applied research on fear ecology that will better inform conservation practices. Our framework can help scientists and practitioners anticipate and mitigate unintended consequences of management decisions, and highlight new levers for multi-species conservation strategies that promote human–wildlife coexistence.more » « less
- 
            Haddon, Lindsay (Ed.)Abstract Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of ‘success stories’ is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a ‘horizon scan’, we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.more » « less
- 
            Arctic biodiversity is under threat from both climate-induced environmental change and anthropogenic activity. However, the rapid rate of change and the challenging conditions for studying Arctic environments mean that many research questions must be answered before we can strategically allocate resources for management. Addressing threats to biodiversity in the Arctic is further complicated by the region's complex geopolitics, as eight countries claim jurisdiction over the area, with multiple local considerations such as Indigenous sovereignty and resource rights. Here, we identify research priorities to serve as a starting point for addressing the most pressing threats to Arctic biodiversity. We began by collecting pressing research questions about Arctic biodiversity, thematizing them as either threats or actions, and then categorizing them further into 18 groups. Then, drawing on cross-disciplinary and global expertise of professionals in Arctic science, management, and policy, we considered the barriers to answering these questions and proposed potential solutions that could be implemented if barriers were overcome. Overall, our horizon scan provides an expert assessment of threats (e.g., species’ responses to climate change) and actions (e.g., a lack of fundamental information regarding Arctic biodiversity) needing attention and is intended to guide future conservation action within the Arctic.more » « less
- 
            Abstract Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    