skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial rhodopsins are increasingly favoured over chlorophyll in High Nutrient Low Chlorophyll waters
Award ID(s):
1924464
PAR ID:
10294551
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Microbiology Reports
Volume:
13
Issue:
3
ISSN:
1758-2229
Page Range / eLocation ID:
401 to 406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We performed a mesocosm experiment in buckets to examine the effects of leaf litter input on phytoplankton, using chlorophyll a as a proxy. We followed this up with a second experiment examining the effects of tannins and water color on chlorophyll a to better understand potential mechanisms of leaf litter affecting chlorophyll a. 
    more » « less
  2. Chlorophyll fluorescence is a well-established method to estimate chlorophyll content in leaves. A popular fluorescence-based meter, the Opti-Sciences CCM-300 Chlorophyll Content Meter (CCM-300), utilizes the fluorescence ratio F735/F700 and equations derived from experiments using broadleaf species to provide a direct, rapid estimate of chlorophyll content used for many applications. We sought to quantify the performance of the CCM-300 relative to more intensive methods, both across plant functional types and years of use. We linked CCM-300 measurements of broadleaf, conifer, and graminoid samples in 2018 and 2019 to high-performance liquid chromatography (HPLC) and/or spectrophotometric (Spec) analysis of the same leaves. We observed a significant difference between the CCM-300 and HPLC/Spec, but not between HPLC and Spec. In comparison to HPLC, the CCM-300 performed better for broadleaves (r = 0.55, RMSE = 154.76) than conifers (r = 0.52, RMSE = 171.16) and graminoids (r = 0.32, RMSE = 127.12). We observed a slight deterioration in meter performance between years, potentially due to meter calibration. Our results show that the CCM-300 is reliable to demonstrate coarse variations in chlorophyll but may be limited for cross-plant functional type studies and comparisons across years. 
    more » « less
  3. null (Ed.)