skip to main content


Title: Tree growth increases through opposing above‐ground and below‐ground resource strategies
Award ID(s):
2016678
NSF-PAR ID:
10294558
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Ecology
ISSN:
0022-0477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Este trabajo propone un método de muestreo a fin de contrastar en el terreno los datos obtenidos a partir de imágenes LiDAR, que permitan al investigador verificar y/o predecir la precisión de los resultados sobre un área mayor. El estudio de caso aquí presentado se centra en el sitio de Yaxnohcah, ubicado en la Meseta Cárstica Central de la península de Yucatán. Está área se caracteriza por presentar una variedad de densos bosques tropicales húmedos y zonas de vegetación de humedal con pocos accesos de caminos y brechas. Para este estudio se seleccionaron veintiún bloques de 100 por 100 metros del área, que comprendió una muestra estratificada del 10 por ciento, e incluyeron ejemplos de varias zonas de vegetación distinta. Se realizó un recorrido de superficie por transectos a lo largo de los bloques, registrándose dos tipos de errores. Los Errores del Tipo 1 consisten de rasgos culturales identificados en campo, pero que no aparecen en el los Modelos Digital de Elevación (MDE) o en el Modelo de Superficie Digital (MSE). Los Errores de Tipo 2 consisten en rasgos que parecen culturales en el MDE o MSE, pero que en realidad son causadas por diferentes tipos de vegetación. De manera concurrente, realizamos un extenso reconocimiento de la vegetación en cada bloque, identificando las principales especies presentes, las diferentes alturas de dosel, así como las características generales de la topografía y los suelos. Los resultados del método de contrastación en el terreno demuestran que los datos lidar son sumamente confiables y es posible utilizar una muestra a fin de evaluar la precisión, la veracidad y la certidumbre de los datos sobre un área mayor. 
    more » « less
  2. Recent studies on dynamic legged locomotion have focused on incorporating passive compliant elements into robot legs which can help with energy efficiency and stability, enabling them to work in wide range of environments. In this work, we present the design and testing of a soft robotic foot capable of active stiffness control using granular jamming. This foot is designed and tested to be used on soft, flowable ground such as sand. Granular jamming feet enable passive foot shape change when in contact with the ground for adaptability to uneven surfaces, and can also actively change stiffness for the ability to apply sufficient propulsion forces. We seek to study the role of shape change and stiffness change in foot-ground interactions during foot-fall impact and shear. We have measured the acceleration during impact, surface traction force, and the force to pull the foot out of the medium for different states of the foot. We have demonstrated that the control of foot stiffness and shape using the proposed foot design leads to improved locomotion, specifically an approximately 52% reduced foot deceleration at the joints after impact, an approximately 63% reduced depth of penetration in the sand on impact, higher shear force capabilities for a constant depth above the ground, and an approximately 98% reduced pullout force compared to a rigid foot. 
    more » « less