skip to main content


Title: How different effectors and action effects modulate the formation of separate motor memories
Abstract Humans can operate a variety of modern tools, which are often associated with different visuomotor transformations. Studies investigating this ability have shown that separate motor memories can be acquired implicitly when different sensorimotor transformations are associated with distinct (intended) postures or explicitly when abstract contextual cues are leveraged by aiming strategies. It still remains unclear how different transformations are remembered implicitly when postures are similar. We investigated whether features of planning to manipulate a visual tool, such as its visual identity or the environmental effect intended by its use (i.e. action effect) would enable implicit learning of opposing visuomotor rotations. Results show that neither contextual cue led to distinct implicit motor memories, but that cues only affected implicit adaptation indirectly through generalization around explicit strategies. In contrast, a control experiment where participants practiced opposing transformations with different hands did result in contextualized aftereffects differing between hands across generalization targets. It appears that different (intended) body states are necessary for separate aftereffects to emerge, suggesting that the role of sensory prediction error-based adaptation may be limited to the recalibration of a body model, whereas establishing separate tool models may proceed along a different route.  more » « less
Award ID(s):
1838462
NSF-PAR ID:
10294582
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The human ability to use different tools demonstrates our capability of forming and maintaining multiple, context-specific motor memories. Experimentally, this has been investigated in dual adaptation, where participants adjust their reaching movements to opposing visuomotor transformations. Adaptation in these paradigms occurs by distinct processes, such as strategies for each transformation or the implicit acquisition of distinct visuomotor mappings. Although distinct, transformation-dependent aftereffects have been interpreted as support for the latter, they could reflect adaptation of a single visuomotor map, which is locally adjusted in different regions of the workspace. Indeed, recent studies suggest that explicit aiming strategies direct where in the workspace implicit adaptation occurs, thus potentially serving as a cue to enable dual adaptation. Disentangling these possibilities is critical to understanding how humans acquire and maintain motor memories for different skills and tools. We therefore investigated generalization of explicit and implicit adaptation to untrained movement directions after participants practiced two opposing cursor rotations, which were associated with the visual display being presented in the left or right half of the screen. Whereas participants learned to compensate for opposing rotations by explicit strategies specific to this visual workspace cue, aftereffects were not cue sensitive. Instead, aftereffects displayed bimodal generalization patterns that appeared to reflect locally limited learning of both transformations. By varying target arrangements and instructions, we show that these patterns are consistent with implicit adaptation that generalizes locally around movement plans associated with opposing visuomotor transformations. Our findings show that strategies can shape implicit adaptation in a complex manner. NEW & NOTEWORTHY Visuomotor dual adaptation experiments have identified contextual cues that enable learning of separate visuomotor mappings, but the underlying representations of learning are unclear. We report that visual workspace separation as a contextual cue enables the compensation of opposing cursor rotations by a combination of explicit and implicit processes: Learners developed context-dependent explicit aiming strategies, whereas an implicit visuomotor map represented dual adaptation independent from arbitrary context cues by local adaptation around the explicit movement plan. 
    more » « less
  2. Motor learning in visuomotor adaptation tasks results from both explicit and implicit processes, each responding differently to an error signal. Although the motor output side of these processes has been extensively studied, the visual input side is relatively unknown. We investigated if and how depth perception affects the computation of error information by explicit and implicit motor learning. Two groups of participants made reaching movements to bring a virtual cursor to a target in the frontoparallel plane. The Delayed group was allowed to reaim and their feedback was delayed to emphasize explicit learning, whereas the camped group received task-irrelevant clamped cursor feedback and continued to aim straight at the target to emphasize implicit adaptation. Both groups played this game in a highly detailed virtual environment (depth condition), leveraging a cover task of playing darts in a virtual tavern, and in an empty environment (no-depth condition). The delayed group showed an increase in error sensitivity under depth relative to no-depth. In contrast, the clamped group adapted to the same degree under both conditions. The movement kinematics of the delayed participants also changed under the depth condition, consistent with the target appearing more distant, unlike the Clamped group. A comparison of the delayed behavioral data with a perceptual task from the same individuals showed that the greater reaiming in the depth condition was consistent with an increase in the scaling of the error distance and size. These findings suggest that explicit and implicit learning processes may rely on different sources of perceptual information. NEW & NOTEWORTHY We leveraged a classic sensorimotor adaptation task to perform a first systematic assessment of the role of perceptual cues in the estimation of an error signal in the 3-D space during motor learning. We crossed two conditions presenting different amounts of depth information, with two manipulations emphasizing explicit and implicit learning processes. Explicit learning responded to the visual conditions, consistent with perceptual reports, whereas implicit learning appeared to be independent of them. 
    more » « less
  3. null (Ed.)
    Abstract Compared to blocked practice, interleaved practice of different tasks leads to superior long-term retention despite poorer initial acquisition performance. This phenomenon, the contextual interference effect, is well documented in various domains but it is not yet clear if it persists in the absence of explicit knowledge in terms of fine motor sequence learning. Additionally, while there is some evidence that interleaved practice leads to improved transfer of learning to similar actions, transfer of implicit motor sequence learning has not been explored. The present studies used a serial reaction time task where participants practiced three different eight-item sequences that were either interleaved or blocked on Day 1 (training) and Day 2 (testing). In Experiment 1, the retention of the three training sequences was tested on Day 2 and in Experiment 2, three novel sequences were performed on Day 2 to measure transfer. We assessed whether subjects were aware of the sequences to determine whether the benefit of interleaved practice extends to implicitly learned sequences. Even for participants who reported no awareness of the sequences, interleaving led to a benefit for both retention and transfer compared to participants who practiced blocked sequences. Those who trained with blocked sequences were left unprepared for interleaved sequences at test, while those who trained with interleaved sequences were unaffected by testing condition, revealing that learning resulting from blocked practice may be less flexible and more vulnerable to testing conditions. These results indicate that the benefit of interleaved practice extends to implicit motor sequence learning and transfer. 
    more » « less
  4. Abstract Humans exhibit remarkably complex cognitive abilities and adaptive behavior in daily life. Cognitive operation in the " mental workspace, " such as mentally rotating a piece of luggage to fit into fixed trunk space, helps us maintain and manipulate information on a moment-to-moment basis. Skill acquisition in the " sensorimotor workspace, " such as learning a new mapping between the magnitude of new vehicle movement and wheel turn, allows us to adjust our behavior to changing environmental or internal demands to maintain appropriate motor performance. While this cognitive and sensorimotor synergy is at the root of adaptive behavior in the real world, their interplay has been understudied due to a divide-and-conquer approach. We evaluated whether a separate domain-specific or common domain-general operation drives mental and sensorimotor rotational transformations. We observed that participants improved the efficiency of mental rotation speed after the visuomotor rotation training, and their learning rate for visuomotor adaptation also improved after their mental rotation training. Such bidirectional transfer between two widely different tasks highlights the remarkable reciprocal plasticity and demonstrates a common transformation mechanism between two intertwined workspaces. Our findings urge the necessity of an explicitly integrated approach to enhance our understanding of the dynamic interdependence between cognitive and sensorimotor mechanisms. 
    more » « less
  5. Visually guided movements can show surprising accuracy even when the perceived three-dimensional (3D) shape of the target is distorted. One explanation of this paradox is that an evolutionarily specialized “vision-for-action” system provides accurate shape estimates by relying selectively on stereo information and ignoring less reliable sources of shape information like texture and shading. However, the key support for this hypothesis has come from studies that analyze average behavior across many visuomotor interactions where available sensory feedback reinforces stereo information. The present study, which carefully accounts for the effects of feedback, shows that visuomotor interactions with slanted surfaces are actually planned using the same cue-combination function as slant perception and that apparent dissociations can arise due to two distinct supervised learning processes: sensorimotor adaptation and cue reweighting. In two experiments, we show that when a distorted slant cue biases perception (e.g., surfaces appear flattened by a fixed amount), sensorimotor adaptation rapidly adjusts the planned grip orientation to compensate for this constant error. However, when the distorted slant cue is unreliable, leading to variable errors across a set of objects (i.e., some slants are overestimated, others underestimated), then relative cue weights are gradually adjusted to reduce the misleading effect of the unreliable cue, consistent with previous perceptual studies of cue reweighting. The speed and flexibility of these two forms of learning provide an alternative explanation of why perception and action are sometimes found to be dissociated in experiments where some 3D shape cues are consistent with sensory feedback while others are faulty. NEW & NOTEWORTHY When interacting with three-dimensional (3D) objects, sensory feedback is available that could improve future performance via supervised learning. Here we confirm that natural visuomotor interactions lead to sensorimotor adaptation and cue reweighting, two distinct learning processes uniquely suited to resolve errors caused by biased and noisy 3D shape cues. These findings explain why perception and action are often found to be dissociated in experiments where some cues are consistent with sensory feedback while others are faulty. 
    more » « less