skip to main content


Title: Age-related enhancement in visuomotor learning by a dual-task
Abstract

Many daily activities require performance of multiple tasks integrating cognitive and motor processes. While the fact that both processes go through deterioration and changes with aging has been generally accepted, not much is known about how aging interacts with stages of motor skill acquisition under a cognitively demanding situation. To address this question, we combined a visuomotor adaptation task with a secondary cognitive task. We made two primary findings beyond the expected age-related performance deterioration. First, while young adults showed classical dual-task cost in the early motor learning phase dominated by explicit processes, older adults instead strikingly displayed enhanced performance in the later stage, dominated by implicit processes. For older adults, the secondary task may have facilitated a shift to their relatively intact implicit learning processes that reduced reliance on their already-deficient explicit processes during visuomotor adaptation. Second, we demonstrated that consistently performing the secondary task in learning and re-learning phases can operate as an internal task-context and facilitate visuomotor memory retrieval later regardless of age groups. Therefore, our study demonstrated age-related similarities and differences in integrating concurrent cognitive load with motor skill acquisition which, may in turn, contributes to the understanding of a shift in balance across multiple systems.

 
more » « less
Award ID(s):
1555006 1849169
NSF-PAR ID:
10365944
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions between the two streams during demanding motor tasks. Older adults ( n = 15) and young controls ( n = 26) performed reaching or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions. NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance. Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor information may contribute to functional deficits. 
    more » « less
  2. null (Ed.)
    The human ability to use different tools demonstrates our capability of forming and maintaining multiple, context-specific motor memories. Experimentally, this has been investigated in dual adaptation, where participants adjust their reaching movements to opposing visuomotor transformations. Adaptation in these paradigms occurs by distinct processes, such as strategies for each transformation or the implicit acquisition of distinct visuomotor mappings. Although distinct, transformation-dependent aftereffects have been interpreted as support for the latter, they could reflect adaptation of a single visuomotor map, which is locally adjusted in different regions of the workspace. Indeed, recent studies suggest that explicit aiming strategies direct where in the workspace implicit adaptation occurs, thus potentially serving as a cue to enable dual adaptation. Disentangling these possibilities is critical to understanding how humans acquire and maintain motor memories for different skills and tools. We therefore investigated generalization of explicit and implicit adaptation to untrained movement directions after participants practiced two opposing cursor rotations, which were associated with the visual display being presented in the left or right half of the screen. Whereas participants learned to compensate for opposing rotations by explicit strategies specific to this visual workspace cue, aftereffects were not cue sensitive. Instead, aftereffects displayed bimodal generalization patterns that appeared to reflect locally limited learning of both transformations. By varying target arrangements and instructions, we show that these patterns are consistent with implicit adaptation that generalizes locally around movement plans associated with opposing visuomotor transformations. Our findings show that strategies can shape implicit adaptation in a complex manner. NEW & NOTEWORTHY Visuomotor dual adaptation experiments have identified contextual cues that enable learning of separate visuomotor mappings, but the underlying representations of learning are unclear. We report that visual workspace separation as a contextual cue enables the compensation of opposing cursor rotations by a combination of explicit and implicit processes: Learners developed context-dependent explicit aiming strategies, whereas an implicit visuomotor map represented dual adaptation independent from arbitrary context cues by local adaptation around the explicit movement plan. 
    more » « less
  3. Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy tradeoff. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological level. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular 2D track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced choice task. In a subset of 15 participants, we measured short latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function (F 4,108 = 32.15, p < 0.001) and was associated with improved proprioceptive sensitivity at retention (t 22 = 24.75, p = 0.0031). Further, SAI increased after training (F 1,14 = 5.41, p = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc) are specifically linked to somatosensory function. 
    more » « less
  4. Motor learning in visuomotor adaptation tasks results from both explicit and implicit processes, each responding differently to an error signal. Although the motor output side of these processes has been extensively studied, the visual input side is relatively unknown. We investigated if and how depth perception affects the computation of error information by explicit and implicit motor learning. Two groups of participants made reaching movements to bring a virtual cursor to a target in the frontoparallel plane. The Delayed group was allowed to reaim and their feedback was delayed to emphasize explicit learning, whereas the camped group received task-irrelevant clamped cursor feedback and continued to aim straight at the target to emphasize implicit adaptation. Both groups played this game in a highly detailed virtual environment (depth condition), leveraging a cover task of playing darts in a virtual tavern, and in an empty environment (no-depth condition). The delayed group showed an increase in error sensitivity under depth relative to no-depth. In contrast, the clamped group adapted to the same degree under both conditions. The movement kinematics of the delayed participants also changed under the depth condition, consistent with the target appearing more distant, unlike the Clamped group. A comparison of the delayed behavioral data with a perceptual task from the same individuals showed that the greater reaiming in the depth condition was consistent with an increase in the scaling of the error distance and size. These findings suggest that explicit and implicit learning processes may rely on different sources of perceptual information. NEW & NOTEWORTHY We leveraged a classic sensorimotor adaptation task to perform a first systematic assessment of the role of perceptual cues in the estimation of an error signal in the 3-D space during motor learning. We crossed two conditions presenting different amounts of depth information, with two manipulations emphasizing explicit and implicit learning processes. Explicit learning responded to the visual conditions, consistent with perceptual reports, whereas implicit learning appeared to be independent of them. 
    more » « less
  5. One of the brain’s primary functions is to promote actions in dynamic, distracting environments. Because distractions divert attention from our primary goals, we must learn to maintain accurate actions under sensory and cognitive distractions. Visuomotor adaptation is a learning process that restores performance when sensorimotor capacities or environmental conditions are abruptly or gradually altered. Prior work showed that learning to counteract an abrupt perturbation under a particular single- or dual-task setting (i.e., attentional context) was associated with better recall under the same conditions. This suggested that the attentional context was encoded during adaptation and used as a recall cue. The current study investigated whether the attentional context (i.e., single vs. dual task) also affected adaptation and recall to a gradual perturbation, which limited awareness of movement errors. During adaptation, participants moved a cursor to a target while learning to counteract a visuomotor rotation that increased from 0° to 45° by 0.3° each trial, with or without performing a secondary task. Relearning was impaired when the attentional context was different between adaptation and recall ( experiment 1), even when the exposure to the attentional context was limited to the early or late half of adaptation ( experiment 2). Changing the secondary task did not affect relearning, indicating that the attentional context, rather than specific stimuli or tasks, was associated with better recall performance ( experiment 3). These findings highlight the importance of cognitive factors, such as attention, in visuomotor adaptation and have implications for learning and rehabilitation paradigms. NEW & NOTEWORTHY Adaptation acquired under single- or dual-task setting, which created an undivided or divided attentional context, respectively, was impaired when relearning occurred under different conditions (i.e., shifting from a dual to single task). Changes to the attentional context impaired relearning when the initial adaptation was to a gradual perturbation. Explicit awareness of the perturbation was not necessary for this effect to be robust, nor was the effect attributable to changes in the secondary task requirements. 
    more » « less