skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sufficient conditions and constraints for reversing general quantum errors
Abstract Reversing the effects of a quantum evolution, for example, as is done in error correction, is an important task for controlling quantum systems in order to produce reliable quantum devices. When the evolution is governed by a completely positive map, there exist reversibility conditions, known as the quantum error correcting code conditions, which are necessary and sufficient conditions for the reversibility of a quantum operation on a subspace, the code space. However, if we suppose that the evolution is not described by a completely positive map, necessary and sufficient conditions are not known. Here we consider evolutions that do not necessarily correspond to a completely positive map. We prove that the completely positive map error correcting code conditions can lead to a code space that is not in the domain of the map, meaning that the output of the map is not positive. A corollary to our theorem provides a class of relevant examples. Finally, we provide a set of sufficient conditions that will enable the use of quantum error correcting code conditions while ensuring positivity.  more » « less
Award ID(s):
1820870
PAR ID:
10294649
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical review and Physical review letters index
Volume:
102
Issue:
6
ISSN:
0094-0003
Page Range / eLocation ID:
062415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kilgour, D.M.; Kunze, H.; Makarov, R.; Melnik, R.; Wang, X. (Ed.)
    Modeling open quantum systems is a difficult task for many experiments. A standard method for modeling open system evolution uses an environment that is initially uncorrelated with the system in question, evolves the two unitarily, and then traces over the bath degrees of freedom to find an effective evolution of the system. This model can be insufficient for physical systems that have initial correlations. Specifically, there are evolutions ρS=trE(ρSE)→ρ′S=trE(UρSEU†) which cannot be modeled as ρS=trE(ρSE)→ρ′S=trE(UρS⊗ρEU†). An example of this is ρSE=|Φ+⟩⟨Φ+| and USE=CNOT with control on the environment. Unfortunately, there is no known method of modeling an open quantum system which is completely general. We first present some restrictions on the availability of completely positive (CP) maps via the standard prescription. We then discuss some implications a more general treatment would have for quantum control methods. In particular, we provide a theorem that restricts the reversibility of a map that is not completely positive (NCP). Let Φ be NCP and Φ~ be the corresponding CP map given by taking the absolute value of the coefficients in Φ. The theorem shows that the CP reversibility conditions for Φ~ do not provide reversibility conditions for Φ unless Φ is positive on the domain of the code space. 
    more » « less
  2. Abstract In open quantum systems, it is known that if the system and environment are in a product state, the evolution of the system is given by a linear completely positive (CP) Hermitian map. CP maps are a subset of general linear Hermitian maps, which also include non completely positive (NCP) maps. NCP maps can arise in evolutions such as non-Markovian evolution, where the CP divisibility of the map (writing the overall evolution as a composition of CP maps) usually fails. Positive but NCP maps are also useful as entanglement witnesses. In this paper, we focus on transforming an initial NCP map to a CP map through composition with the asymmetric depolarizing map. We use separate asymmetric depolarizing maps acting on the individual subsystems. Previous work have looked at structural physical approximation (SPA), which is a CP approximation of an NCP map using a mixture of the NCP map with a completely depolarizing map. We prove that the composition can always be made CP without completely depolarizing in any direction. It is possible to depolarize less in some directions. We give the general proof by using the Choi matrix and an isomorphism from a maximally entangled two qudit state to a set of qubits. We also give measures that describe the amount of disturbance the depolarization introduces to the original map. Given our measures, we show that asymmetric depolarization has many advantages over SPA in preserving the structure of the original NCP map. Finally, we give some examples. For some measures and examples, completely depolarizing (while not necessary) in some directions can give a better approximation than keeping the depolarizing parameters bounded by the required depolarization if symmetric depolarization is used. 
    more » « less
  3. Detection of very weak forces and precise measurement of time are two of the many applications of quantum metrology to science and technology. To sense an unknown physical parameter, one prepares an initial state of a probe system, allows the probe to evolve as governed by a Hamiltonian H for some time t, and then measures the probe. If H is known, we can estimate t by this method; if t is known, we can estimate classical parameters on which H depends. The accuracy of a quantum sensor can be limited by either intrinsic quantum noise or by noise arising from the interactions of the probe with its environment. In this work, we introduce and study a fundamental trade-off, which relates the amount by which noise reduces the accuracy of a quantum clock to the amount of information about the energy of the clock that leaks to the environment. Specifically, we consider an idealized scenario in which a party Alice prepares an initial pure state of the clock, allows the clock to evolve for a time that is not precisely known, and then transmits the clock through a noisy channel to a party Bob. Meanwhile, the environment (Eve) receives any information about the clock that is lost during transmission. We prove that Bob’s loss of quantum Fisher information about the elapsed time is equal to Eve’s gain of quantum Fisher information about a complementary energy parameter. We also prove a similar, but more general, trade-off that applies when Bob and Eve wish to estimate the values of parameters associated with two noncommuting observables. We derive the necessary and sufficient conditions for the accuracy of the clock to be unaffected by the noise, which form a subset of the Knill-Laflamme error-correction conditions. A state and its local time-evolution direction, if they satisfy these conditions, are said to form a metrological code. We provide a scheme to construct metrological codes in the stabilizer formalism. We show that there are metrological codes that cannot be written as a quantum error-correcting code with similar distance in which the Hamiltonian acts as a logical operator, potentially offering new schemes for constructing states that do not lose any sensitivity upon application of a noisy channel. We discuss applications of the trade-off relation to sensing using a quantum many-body probe subject to erasure or amplitude-damping noise. 
    more » « less
  4. Quantum low-density parity-check (LDPC) codes are an important class of quantum error correcting codes. In such codes, each qubit only affects a constant number of syndrome bits, and each syndrome bit only relies on some constant number of qubits. Constructing quantum LDPC codes is challenging. It is an open problem to understand if there exist good quantum LDPC codes, i.e. with constant rate and relative distance. Furthermore, techniques to perform fault-tolerant gates are poorly understood. We present a unified way to address these problems. Our main results are a) a bound on the distance, b) a bound on the code dimension and c) limitations on certain fault-tolerant gates that can be applied to quantum LDPC codes. All three of these bounds are cast as a function of the graph separator of the connectivity graph representation of the quantum code. We find that unless the connectivity graph contains an expander, the code is severely limited. This implies a necessary, but not sufficient, condition to construct good codes. This is the first bound that studies the limitations of quantum LDPC codes that does not rely on locality. As an application, we present novel bounds on quantum LDPC codes associated with local graphs in D -dimensional hyperbolic space. 
    more » « less
  5. The challenge of quantum computing is to combine error resilience with universal computation. Diagonal gates such as the transversal T gate play an important role in implementing a universal set of quantum operations. This paper introduces a framework that describes the process of preparing a code state, applying a diagonal physical gate, measuring a code syndrome, and applying a Pauli correction that may depend on the measured syndrome (the average logical channel induced by an arbitrary diagonal gate). It focuses on CSS codes, and describes the interaction of code states and physical gates in terms of generator coefficients determined by the induced logical operator. The interaction of code states and diagonal gates depends very strongly on the signs of Z -stabilizers in the CSS code, and the proposed generator coefficient framework explicitly includes this degree of freedom. The paper derives necessary and sufficient conditions for an arbitrary diagonal gate to preserve the code space of a stabilizer code, and provides an explicit expression of the induced logical operator. When the diagonal gate is a quadratic form diagonal gate (introduced by Rengaswamy et al.), the conditions can be expressed in terms of divisibility of weights in the two classical codes that determine the CSS code. These codes find application in magic state distillation and elsewhere. When all the signs are positive, the paper characterizes all possible CSS codes, invariant under transversal Z -rotation through π / 2 l , that are constructed from classical Reed-Muller codes by deriving the necessary and sufficient constraints on l . The generator coefficient framework extends to arbitrary stabilizer codes but there is nothing to be gained by considering the more general class of non-degenerate stabilizer codes. 
    more » « less