skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guaranteeing completely positive quantum evolution
Abstract In open quantum systems, it is known that if the system and environment are in a product state, the evolution of the system is given by a linear completely positive (CP) Hermitian map. CP maps are a subset of general linear Hermitian maps, which also include non completely positive (NCP) maps. NCP maps can arise in evolutions such as non-Markovian evolution, where the CP divisibility of the map (writing the overall evolution as a composition of CP maps) usually fails. Positive but NCP maps are also useful as entanglement witnesses. In this paper, we focus on transforming an initial NCP map to a CP map through composition with the asymmetric depolarizing map. We use separate asymmetric depolarizing maps acting on the individual subsystems. Previous work have looked at structural physical approximation (SPA), which is a CP approximation of an NCP map using a mixture of the NCP map with a completely depolarizing map. We prove that the composition can always be made CP without completely depolarizing in any direction. It is possible to depolarize less in some directions. We give the general proof by using the Choi matrix and an isomorphism from a maximally entangled two qudit state to a set of qubits. We also give measures that describe the amount of disturbance the depolarization introduces to the original map. Given our measures, we show that asymmetric depolarization has many advantages over SPA in preserving the structure of the original NCP map. Finally, we give some examples. For some measures and examples, completely depolarizing (while not necessary) in some directions can give a better approximation than keeping the depolarizing parameters bounded by the required depolarization if symmetric depolarization is used.  more » « less
Award ID(s):
1820870
PAR ID:
10382594
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
54
Issue:
50
ISSN:
1751-8113
Page Range / eLocation ID:
505302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kilgour, D.M.; Kunze, H.; Makarov, R.; Melnik, R.; Wang, X. (Ed.)
    Modeling open quantum systems is a difficult task for many experiments. A standard method for modeling open system evolution uses an environment that is initially uncorrelated with the system in question, evolves the two unitarily, and then traces over the bath degrees of freedom to find an effective evolution of the system. This model can be insufficient for physical systems that have initial correlations. Specifically, there are evolutions ρS=trE(ρSE)→ρ′S=trE(UρSEU†) which cannot be modeled as ρS=trE(ρSE)→ρ′S=trE(UρS⊗ρEU†). An example of this is ρSE=|Φ+⟩⟨Φ+| and USE=CNOT with control on the environment. Unfortunately, there is no known method of modeling an open quantum system which is completely general. We first present some restrictions on the availability of completely positive (CP) maps via the standard prescription. We then discuss some implications a more general treatment would have for quantum control methods. In particular, we provide a theorem that restricts the reversibility of a map that is not completely positive (NCP). Let Φ be NCP and Φ~ be the corresponding CP map given by taking the absolute value of the coefficients in Φ. The theorem shows that the CP reversibility conditions for Φ~ do not provide reversibility conditions for Φ unless Φ is positive on the domain of the code space. 
    more » « less
  2. In this paper we initiate the study of entanglement-breaking (EB) superchannels. These are processes that always yield separable maps when acting on one side of a bipartite completely positive (CP) map. EB superchannels are a generalization of the well-known EB channels. We give several equivalent characterizations of EB supermaps and superchannels. Unlike its channel counterpart, we find that not every EB superchannel can be implemented as a measure-and-prepare superchannel. We also demonstrate that many EB superchannels can be superactivated, in the sense that they can output non-separable channels when wired in series.We then introduce the notions of CPTP- and CP-complete images of a superchannel, which capture deterministic and probabilistic channel convertibility, respectively. This allows us to characterize the power of EB superchannels for generating CP maps in different scenarios, and it reveals some fundamental differences between channels and superchannels. Finally, we relax the definition of separable channels to include ( p , q ) -non-entangling channels, which are bipartite channels that cannot generate entanglement using p - and q -dimensional ancillary systems. By introducing and investigating k -EB maps, we construct examples of ( p , q ) -EB superchannels that are not fully entanglement breaking. Partial results on the characterization of ( p , q ) -EB superchannels are also provided. 
    more » « less
  3. Abstract Reversing the effects of a quantum evolution, for example, as is done in error correction, is an important task for controlling quantum systems in order to produce reliable quantum devices. When the evolution is governed by a completely positive map, there exist reversibility conditions, known as the quantum error correcting code conditions, which are necessary and sufficient conditions for the reversibility of a quantum operation on a subspace, the code space. However, if we suppose that the evolution is not described by a completely positive map, necessary and sufficient conditions are not known. Here we consider evolutions that do not necessarily correspond to a completely positive map. We prove that the completely positive map error correcting code conditions can lead to a code space that is not in the domain of the map, meaning that the output of the map is not positive. A corollary to our theorem provides a class of relevant examples. Finally, we provide a set of sufficient conditions that will enable the use of quantum error correcting code conditions while ensuring positivity. 
    more » « less
  4. Abstract In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $$(\textrm{SL}_{2}(\mathbb{R}))^{n} \rtimes S_{n}$$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $$\mathbb{F}$$, there is no finite set of equations whose orbit under $$(\textrm{SL}_{2}(\mathbb{F}))^{n} \rtimes S_{n}$$ cuts out the image of $$n\times n$$ matrices over $${\mathbb{F}}$$ under the principal minor map for every $$n$$. 
    more » « less
  5. In this paper, locally Lipschitz, regular functions are utilized to identify and remove infeasible directions from set-valued maps that define differential inclusions. The resulting reduced set-valued map is pointwise smaller (in the sense of set containment) than the original set-valued map. The corresponding reduced differential inclusion, defined by the reduced set-valued map, is utilized to develop a generalized notion of a derivative for locally Lipschitz candidate Lyapunov functions in the direction(s) of a set-valued map. The developed generalized derivative yields less conservative statements of Lyapunov stability theorems, invariance theorems, invariance-like results, and Matrosov theorems for differential inclusions. Included illustrative examples demonstrate the utility of the developed theory. 
    more » « less