The textures of outcrop and near-surface exposures of the massive magnetite orebodies (>90 vol % magnetite) at the Plio-Pleistocene El Laco iron oxide-apatite (IOA) deposit in northern Chile are similar to basaltic lava flows and have compositions that overlap high- and low-temperature hydrothermal magnetite. Existing models— liquid immiscibility and complete metasomatic replacement of andesitic lava flows—attempt to explain the genesis of the orebodies by entirely igneous or entirely hydrothermal processes. Importantly, those models were developed by studying only near-surface and outcrop samples. Here, we present the results of a comprehensive study of samples from outcrop and drill core that require a new model for the evolution of the El Laco ore deposit. Backscattered electron (BSE) imaging, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to investigate the textural and compositional variability of magnetite and apatite from surface and drill core samples in order to obtain a holistic understanding of textures and compositions laterally and vertically through the orebodies. Magnetite was analyzed from 39 surface samples from five orebodies (Cristales Grandes, Rodados Negros, San Vicente Alto, Laco Norte, and Laco Sur) and 47 drill core samples from three orebodies (Laco Norte, Laco Sur, andmore »
Triple Oxygen (δ18O, Δ17O), Hydrogen (δ2H), and Iron (δ56Fe) Stable Isotope Signatures Indicate a Silicate Magma Source and Magmatic-Hydrothermal Genesis for Magnetite Orebodies at El Laco, Chile
The Plio-Pleistocene El Laco iron oxide-apatite (IOA) orebodies in northern Chile are some of the most enigmatic
mineral deposits on Earth, interpreted to have formed as lava flows or by hydrothermal replacement,
two radically different processes. Field observations provide some support for both processes, but ultimately
fail to explain all observations. Previously proposed genetic models based on observations and study of outcrop
samples include (1) magnetite crystallization from an erupting immiscible Fe- and P-rich (Si-poor) melt and (2)
metasomatic replacement of andesitic lava flows by a hypogene hydrothermal fluid. A more recent investigation
of outcrop and drill core samples at El Laco generated data that were used to develop a new genetic model that
invokes shallow emplacement and surface venting of a magnetite-bearing magmatic-hydrothermal fluid suspension.
This fluid, with rheological properties similar to basaltic lava, would have been mobilized by decompression-
induced collapse of the volcanic edifice. In this study, we report oxygen, including 17O, hydrogen, and iron
stable isotope ratios in magnetite and bulk iron oxide (magnetite with minor secondary hematite and minor
goethite) from five of seven orebodies around the El Laco volcano, excluding San Vicente Bajo and the minor
Laquito deposits. Calculated values of δ18O, Δ17O, δD, and δ56Fe fingerprint the source of the ore-forming
fluid(s): Δ17Osample = δ17Osample – more »
- Award ID(s):
- 1924142
- Publication Date:
- NSF-PAR ID:
- 10294835
- Journal Name:
- Economic geology
- ISSN:
- 0013-0109
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Chahgaz iron oxide-apatite (IOA) deposit is one of the main IOA deposits in the Bafq metallogenic province, Central Iran. The Chahgaz mineral deposit is hosted by Early Cambrian felsic to intermediate, altered subvolcanic to effusive rocks that range compositionally from granite to diorite. Geochemical, geochronologic and tectonomagmatic investigations of various host rock types in the Bafq province indicate that mineralization was the product of Early Cambrian active continental margin processes that evolved calc-alkaline felsic igneous rocks followed by formation of diabase dykes in a back-arc basin environment. Magnetite is present in massive magnetite-rich ore bodies and veinlets that cut the massive ore bodies. Detailed macro- and micro-scopic characterization of mineralized samples and host rocks reveals a paragenetic sequence containing three generations of magnetite that are distinguished from one another compositionally and texturally. The massive ores contain apatite in trace amounts, consistent with IOA deposits globally, and locally exhibit textures that are visually similar to lava flow structures, as described for the El Laco IOA deposit, Chile. The ore bodies contain miarolitic cavities that are filled by calcite, hematite and quartz. The host rocks for the Chahgaz deposit have undergone widespread hydrothermal metasomatism including Na-Ca, K-, Mg-, Si-, sericitic, argillicmore »
-
Magnetite is the most important iron ore in iron oxide-apatite (IOA) deposits which represent the Cu-poor endmember of the iron oxide-copper–gold (IOCG) clan. Magnetite chemistry has been used as a petrogenetic indicator to identify the geological environment of ore formation and as a fingerprint of the source reservoir of iron. In this study, we present new textural and microanalytical EPMA and LA-ICP-MS data of magnetite from Carmen, Fresia, Mariela and El Romeral IOA deposits located in the Cretaceous Coastal Cordillera of northern Chile. We also provide a comprehensive summary and discussion of magnetite geochemistry from Andean IOAs including Los Colorados, Cerro Negro Norte, El Romeral (Chilean Iron Belt) and the Pliocene El Laco IOA deposit located in the Central Volcanic Zone of the Chilean Andes. Microtextures coupled with geochemical data were used to define and characterize the occurrence of different magnetite types. Magnetite exhibits a variety of textural features including oscillatory zoning, colloform banding, re-equilibration textures, exsolution lamellae and symplectites. The magmatic vs. hydrothermal origin of the different magnetite types and the evolution of IOA deposits can be assessed using diagrams based on compatible trace elements. However, magnetite is very susceptible to hydrothermal alteration and to both textural and compositionalmore »
-
The Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile, contains hundreds of millions of tonnes (Mt) of mineable iron oxide and copper sulfide ore.While there is an agreement that mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the mineralized system. In order to overcome the hydrothermal overprint at Mantoverde, which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the first δ56Fe and δ18O pairs for early-stage magnetite and late-stage hematite that provide information on the source reservoir of the hydrothermal fluids. Magnetite δ56Fe values range from 0.46 ± 0.04 to 0.58 ± 0.02‰and average 0.51 ± 0.16‰(n = 10; 2σ). Three hematite δ56Fe values were measured to be 0.34 ± 0.10, 0.42 ± 0.09, and 0.46 ± 0.06. Magnetite δ18O values range from 0.69 ± 0.04 to 4.61 ± 0.05‰ and average 2.99 ± 2.70‰ (n = 9; 2σ). Hematite δ18O values range from − 1.36 ± 0.05 to 5.57 ± 0.05‰and average 0.10 ± 5.38‰(n = 6; 2σ). These new δ56Fe and δ18O values fingerprint a magmatic-hydrothermal fluid as the predominant ore-forming fluid responsible for mineralization inmore »
-
Iron oxide copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe oxides, and may contain Au, Ag, Co, rare earth elements (REEs), U, and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the hydrothermal unit and manto orebodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three types of magnetite: magnetite with inclusions (type I) is only found in the manto, is the richest in trace elements, and crystallized between 459° and 707°C; type Dark (D) has no visible inclusions and formed at around 543°C; and type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443°C. Temperatures were estimated using the Mg content in magnetite. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n = 9), an average δ18O ± 2σ value of 2.19 ± 0.45‰ (n = 9), and D’17O values that range between –0.075 and –0.047‰. Sulfide separates yieldedmore »