skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WIP: Teacher Leader Engineering Network (TaLENt): A Collective Impact Model for K-12 Engineering Teacher Leaders
Award ID(s):
1711515
PAR ID:
10294915
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
WIP: Teacher Leader Engineering Network (TaLENt): A Collective Impact Model for K-12 Engineering Teacher Leaders
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less
  2. K-12 engineering education is currently challenged to have willing and qualified teachers to teach high school level engineering classes. Using multiple data sources that include interviews, classroom observations, and weekly reflections this single case study details how a music teacher with a non-engineering background embraces computer-assisted design. The results suggest that appropriate professional development and encouragement from administrators combined with personal drive can empower teachers from non-STEM disciplines to teach design and provide collaborative learning experiences relating to student fields of interest. The study has implications for engineering professional development programs for teachers and the sustainability of such efforts. 
    more » « less
  3. In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. The paper will describe the design and details of the initial implementation of the E4USA curriculum, focusing on the features that make this course suitable ‘for all.’ 
    more » « less