skip to main content


Title: Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge
Abstract Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their significant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to five distinct small pigmented eukaryote cell populations, identified and sorted by flow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8–2 µm) and Bacillariophyceae (0.8–3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed differences in the old plume core and at one of the plume margin stations. Such results reflect the dynamic interactions of the plume and offshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly affected by habitat types at this time of the year.  more » « less
Award ID(s):
1737128 1737078
NSF-PAR ID:
10294919
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We measured rates of N- and C-fixation with a direct tracer method in regions of the western tropical North Atlantic influenced by the Amazon River plume during the high flow period of 2010 (May–June 2010). We found distinct regional variations in N-fixation activity, with the lowest rates in the plume proper and the highest rates in the plume margins and in offshore waters. A comparison of our N- and C-fixation measurements showed that the relative contribution of N-fixation to total primary production increased from the plume core toward oceanic waters, and that most of the C-fixation in this system was supported by sources of nitrogen other than those derived from biological N-fixation, or diazotrophy. We complemented these rate experiments with measurements of the δ15N of suspended particles (δ15PN), which documented the important and often dominant role of diazotrophs in supplying nitrogen to particulate organic matter in the water column. These coupled measurements revealed that small phytoplankton contributed more new nitrogen to the particulate nitrogen pool than larger phytoplankton. We used a habitat classification method to assess the fac- tors that control diazotrophic activity and contribution to the suspended particle pool, both of which increased from the plume toward oceanic waters. Our findings provide an important constraint on the role of the Amazon plume in creating distinct niches and roles for diazotrophs in the nutrient and carbon budgets of the western tropical North Atlantic. 
    more » « less
  2. The Western Tropical North Atlantic is a highly dynamic marine system where the Amazon River Plume (ARP) generates a patchwork of environmental conditions that favor different phytoplankton groups. To study phytoplanktonic community structure in such heterogeneous conditions, we used a set of five standard ship-based measurements taken from oceanographic surveys between 2010 and 2021 to characterize different habitat types. We then utilized a variety of multiparametric approaches to examine phytoplankton biodiversity in the different habitats to assess the biological relevance of our delineated habitats. Our approach generated a consistent set of habitat types across cruises carried out in multiple different years and the Amazon’s two predominant (wet and dry) seasons. Our phytoplankton community analyses revealed strong distinctions among all habitats along the plume gradient usingin-vivofluorescence and diagnostic pigments, and clear contrasts of diazotroph community along the mesohaline waters using direct cell-count, a pattern consistent with niche partitioning among similar species. The few apparent mismatches we found between phytoplankton community composition and habitat may reflect recent hydrographic changes driven by mixing and/or upwelling and thus may be a useful index to biologically-relevant temporal variation. Our habitat classification approach is straightforward and broadly applicable in identifying biologically distinct areas within heterogeneous and dynamic regions of the ocean.

     
    more » « less
  3. Abstract

    We found that in the phosphate (PO4)‐depleted western subtropical North Atlantic Ocean, small‐sized pigmented eukaryotes (P‐Euk; < 5 μm) play a central role in the carbon (C) cycling. Although P‐Euk were only ~ 5% of the microbial phytoplankton cell abundance, they represented at least two thirds of the microbial phytoplankton C biomass and fixed more CO2than picocyanobacteria, accounting for roughly half of the volumetric CO2fixation by the microbial phytoplankton, or a third of the total primary production. Cell‐specific PO4assimilation rates of P‐Euk and nonpigmented eukaryotes (NP‐Euk; < 5 μm) were generally higher than of picocyanobacteria. However, when normalized to biovolumes, picocyanobacteria assimilated roughly four times more PO4than small eukaryotes, indicating different strategies to cope with PO4limitation. Our results underline an imbalance in the CO2: PO4uptake rate ratios, which may be explained by phagotrophic predation providing mixotrophic protists with their largest source of PO4. 18S rDNA amplicon sequence analyses suggested that P‐Euk was dominated by members of green algae and dinoflagellates, the latter group commonly mixotrophic, whereas marine alveolates were the dominant NP‐Euk. Bacterivory by P‐Euk (0.9 ± 0.3 bacteria P‐Euk−1h−1) was comparable to values previously measured in the central North Atlantic, indicating that small mixotrophic eukaryotes likely exhibit similar predatory pressure on bacteria. Interestingly, bacterivory rates were reduced when PO4was added during experimental incubations, indicating that feeding rate by P‐Euk is regulated by PO4availability. This may be in response to the higher cost associated with assimilating PO4by phagocytosis compared to osmotrophy.

     
    more » « less
  4. Abstract

    The Bay of Bengal (BoB) is a 2,600,000 km2expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients—which have low temperature variation (27–29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters,Prochlorococcusaveraged 11.7 ± 4.4 × 104 cells ml−1, predominantly HLII, whereas LLII and ‘rare’ ecotypes, HLVI and LLVII, dominated in the SCM.Synechococcusaveraged 8.4 ± 2.3 × 104 cells ml−1in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites,OstreococcusClade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea‐influenced high salinity (southerly; prasinophytes) to freshwater‐influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyteMicromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml−1, surface) where a novelOstreococcuswas revealed, named hereOstreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto ‘rare’ picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.

     
    more » « less
  5. Abstract High-resolution optical imaging systems are quickly becoming universal tools to characterize and quantify microbial diversity in marine ecosystems. Automated classification systems such as convolutional neural networks (CNNs) are often developed to identify species within the immense number of images (e.g., millions per month) collected. The goal of our study was to develop a CNN to classify phytoplankton images collected with an Imaging FlowCytobot for the Palmer Antarctica Long-Term Ecological Research project. A relatively small CNN (~2 million parameters) was developed and trained using a subset of manually identified images, resulting in an overall test accuracy, recall, and f1-score of 93.8, 93.7, and 93.7%, respectively, on a balanced dataset. However, the f1-score dropped to 46.5% when tested on a dataset of 10,269 new images drawn from the natural environment without balancing classes. This decrease is likely due to highly imbalanced class distributions dominated by smaller, less differentiable cells, high intraclass variance, and interclass morphological similarities of cells in naturally occurring phytoplankton assemblages. As a case study to illustrate the value of the model, it was used to predict taxonomic classifications (ranging from genus to class) of phytoplankton at Palmer Station, Antarctica, from late austral spring to early autumn in 2017‐2018 and 2018‐2019. The CNN was generally able to identify important seasonal dynamics such as the shift from large centric diatoms to small pennate diatoms in both years, which is thought to be driven by increases in glacial meltwater from January to March. This shift in particle size distribution has significant implications for the ecology and biogeochemistry of these waters. Moving forward, we hope to further increase the accuracy of our model to better characterize coastal phytoplankton communities threatened by rapidly changing environmental conditions. 
    more » « less