skip to main content


Title: Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge
Abstract Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their significant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to five distinct small pigmented eukaryote cell populations, identified and sorted by flow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8–2 µm) and Bacillariophyceae (0.8–3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed differences in the old plume core and at one of the plume margin stations. Such results reflect the dynamic interactions of the plume and offshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly affected by habitat types at this time of the year.  more » « less
Award ID(s):
1737128 1737078
PAR ID:
10294919
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We measured rates of N- and C-fixation with a direct tracer method in regions of the western tropical North Atlantic influenced by the Amazon River plume during the high flow period of 2010 (May–June 2010). We found distinct regional variations in N-fixation activity, with the lowest rates in the plume proper and the highest rates in the plume margins and in offshore waters. A comparison of our N- and C-fixation measurements showed that the relative contribution of N-fixation to total primary production increased from the plume core toward oceanic waters, and that most of the C-fixation in this system was supported by sources of nitrogen other than those derived from biological N-fixation, or diazotrophy. We complemented these rate experiments with measurements of the δ15N of suspended particles (δ15PN), which documented the important and often dominant role of diazotrophs in supplying nitrogen to particulate organic matter in the water column. These coupled measurements revealed that small phytoplankton contributed more new nitrogen to the particulate nitrogen pool than larger phytoplankton. We used a habitat classification method to assess the fac- tors that control diazotrophic activity and contribution to the suspended particle pool, both of which increased from the plume toward oceanic waters. Our findings provide an important constraint on the role of the Amazon plume in creating distinct niches and roles for diazotrophs in the nutrient and carbon budgets of the western tropical North Atlantic. 
    more » « less
  2. The Western Tropical North Atlantic is a highly dynamic marine system where the Amazon River Plume (ARP) generates a patchwork of environmental conditions that favor different phytoplankton groups. To study phytoplanktonic community structure in such heterogeneous conditions, we used a set of five standard ship-based measurements taken from oceanographic surveys between 2010 and 2021 to characterize different habitat types. We then utilized a variety of multiparametric approaches to examine phytoplankton biodiversity in the different habitats to assess the biological relevance of our delineated habitats. Our approach generated a consistent set of habitat types across cruises carried out in multiple different years and the Amazon’s two predominant (wet and dry) seasons. Our phytoplankton community analyses revealed strong distinctions among all habitats along the plume gradient usingin-vivofluorescence and diagnostic pigments, and clear contrasts of diazotroph community along the mesohaline waters using direct cell-count, a pattern consistent with niche partitioning among similar species. The few apparent mismatches we found between phytoplankton community composition and habitat may reflect recent hydrographic changes driven by mixing and/or upwelling and thus may be a useful index to biologically-relevant temporal variation. Our habitat classification approach is straightforward and broadly applicable in identifying biologically distinct areas within heterogeneous and dynamic regions of the ocean.

     
    more » « less
  3. Abstract

    We found that in the phosphate (PO4)‐depleted western subtropical North Atlantic Ocean, small‐sized pigmented eukaryotes (P‐Euk; < 5 μm) play a central role in the carbon (C) cycling. Although P‐Euk were only ~ 5% of the microbial phytoplankton cell abundance, they represented at least two thirds of the microbial phytoplankton C biomass and fixed more CO2than picocyanobacteria, accounting for roughly half of the volumetric CO2fixation by the microbial phytoplankton, or a third of the total primary production. Cell‐specific PO4assimilation rates of P‐Euk and nonpigmented eukaryotes (NP‐Euk; < 5 μm) were generally higher than of picocyanobacteria. However, when normalized to biovolumes, picocyanobacteria assimilated roughly four times more PO4than small eukaryotes, indicating different strategies to cope with PO4limitation. Our results underline an imbalance in the CO2: PO4uptake rate ratios, which may be explained by phagotrophic predation providing mixotrophic protists with their largest source of PO4. 18S rDNA amplicon sequence analyses suggested that P‐Euk was dominated by members of green algae and dinoflagellates, the latter group commonly mixotrophic, whereas marine alveolates were the dominant NP‐Euk. Bacterivory by P‐Euk (0.9 ± 0.3 bacteria P‐Euk−1h−1) was comparable to values previously measured in the central North Atlantic, indicating that small mixotrophic eukaryotes likely exhibit similar predatory pressure on bacteria. Interestingly, bacterivory rates were reduced when PO4was added during experimental incubations, indicating that feeding rate by P‐Euk is regulated by PO4availability. This may be in response to the higher cost associated with assimilating PO4by phagocytosis compared to osmotrophy.

     
    more » « less
  4. Jay Gan (Ed.)
    Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou’s evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities. 
    more » « less
  5. Abstract

    Picoplankton populations dominate the planktonic community in the surface oligotrophic ocean. Yet, their strategies in the acquisition and the partitioning of organic and inorganic sources of nitrogen (N) and carbon (C) are poorly described. Here, we measured at the single‐cell level the uptake of dissolved inorganic C (C‐fixation), C‐leucine, N‐leucine, nitrate (NO3), ammonium (NH4+), and N‐urea in pigmented and nonpigmented picoplankton groups at six low‐N stations in the northwestern Atlantic Ocean. Our study highlights important differences in trophic strategies betweenProchlorococcus,Synechococcus, photosynthetic pico‐eukaryotes, and nonpigmented prokaryotes. Nonpigmented prokaryotes were characterized by high leucine uptake rates, nonsignificant C‐fixation and relatively low NH4+, N‐urea, and NO3uptake rates. Nonpigmented prokaryotes contributed to 7% ± 3%, 2% ± 2%, and 9% ± 5% of the NH4+, NO3, and N‐urea community uptake, respectively. In contrast, pigmented groups displayed relatively high C‐fixation rates, NH4+and N‐urea uptake rates, but lower leucine uptake rates than nonpigmented prokaryotes.Synechococcusand photosynthetic pico‐eukaryotes NO3uptake rates were higher thanProchlorococcusones. Pico‐sized pigmented groups accounted for a significant fraction of the community C‐fixation (63% ± 27%), NH4+uptake (47% ± 27%), NO3uptake (62% ± 49%), and N‐urea uptake (81% ± 35%). Interestingly,Prochlorococcusand photosynthetic pico‐eukaryotes showed a greater reliance on C‐ and N‐leucine thanSynechococcuson average, suggesting a greater reliance on organic C and N sources. Taken together, our single‐cell results decipher the wide diversity of C and N trophic strategies between and within marine picoplankton groups, but a clear partitioning between pigmented and nonpigmented groups still remains.

     
    more » « less