skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planktonic habitats in the Amazon Plume region of the Western Tropical North Atlantic
The Western Tropical North Atlantic is a highly dynamic marine system where the Amazon River Plume (ARP) generates a patchwork of environmental conditions that favor different phytoplankton groups. To study phytoplanktonic community structure in such heterogeneous conditions, we used a set of five standard ship-based measurements taken from oceanographic surveys between 2010 and 2021 to characterize different habitat types. We then utilized a variety of multiparametric approaches to examine phytoplankton biodiversity in the different habitats to assess the biological relevance of our delineated habitats. Our approach generated a consistent set of habitat types across cruises carried out in multiple different years and the Amazon’s two predominant (wet and dry) seasons. Our phytoplankton community analyses revealed strong distinctions among all habitats along the plume gradient usingin-vivofluorescence and diagnostic pigments, and clear contrasts of diazotroph community along the mesohaline waters using direct cell-count, a pattern consistent with niche partitioning among similar species. The few apparent mismatches we found between phytoplankton community composition and habitat may reflect recent hydrographic changes driven by mixing and/or upwelling and thus may be a useful index to biologically-relevant temporal variation. Our habitat classification approach is straightforward and broadly applicable in identifying biologically distinct areas within heterogeneous and dynamic regions of the ocean.  more » « less
Award ID(s):
1737078
PAR ID:
10488913
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
11
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their significant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to five distinct small pigmented eukaryote cell populations, identified and sorted by flow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8–2 µm) and Bacillariophyceae (0.8–3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed differences in the old plume core and at one of the plume margin stations. Such results reflect the dynamic interactions of the plume and offshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly affected by habitat types at this time of the year. 
    more » « less
  2. ABSTRACT Climate‐induced range shifts may displace species into novel habitats where their life history characteristics may differ in response to new physiological conditions. One such species is the mangrove tree crab,Aratus pisonii, that has expanded beyond mangrove habitats into salt marshes, with the help of anthropogenic structures such as boat docks that mimic its natural habitat in many ways. Individuals in the salt marsh grow to smaller sizes and have different reproductive patterns than individuals in the native mangrove or in boat dock habitats. We examined the metabolic rates of crabs associated with each of these three habitats to determine whether changes in energy expenditure could account for the life history changes that have been documented. We found that the metabolic patterns were similar in the three habitats, with metabolic rate increasing with body size and with temperature, being higher for females than for males and increasing during reproduction. However, once these factors were accounted for, there was no additional difference in metabolic patterns between habitats. Combining these patterns with known patterns of temperature differences and differences in food intake between the mangrove, salt marsh, and boat docks provides mechanistic insight into the energy mismatch that has been created by this range expansion from mangroves to salt marshes. The energy dynamics in these different habitats are consistent with and are capable of explaining the observed patterns of life history variation that accompany this range expansion. Our study provides an example of a mechanistic approach to understanding the influence of climate change and associated range shifts on life history variation across habitat types. 
    more » « less
  3. Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza–dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments. 
    more » « less
  4. Abstract Lakeshore riparian habitats have undergone intensive residential development in many parts of the world. Lakeshore residential development (LRD) is associated with aquatic habitat loss/alteration, including altered macrophyte communities and reduced coarse woody habitat. Yet habitat‐mediated and other generalized effects of LRD on lake biotic communities are not well understood. We used two approaches to examine the relationships among LRD, habitat, and fish community in a set of 57 northern Wisconsin lakes. First, we examined how LRD affected aquatic habitat using mixed linear effects models. Second, we evaluated how LRD affected fish abundance and community structure at both whole‐lake and site‐level spatial scales using generalized linear mixed‐effects models. We found that LRD did not have a significant relationship with the total abundance (all species combined) of fish at either scale. However, there were significant species‐specific responses to LRD at the whole‐lake scale. Species abundances varied across the LRD gradient, with bluegill (Lepomis macrochirus) and mimic shiners (Notropis volucellus) responding positively along the gradient and walleye (Sander vitreus) having the most negative response. We also quantified site‐level habitat associations for each fish species. We found that habitat associations did not inform a species' overall response to LRD, as illustrated by species with similar responses to LRD having vastly different habitat associations. Finally, even with the inclusion of littoral habitat information in models, LRD still had significant effects on species abundances, reflecting a role of LRD in shaping littoral fish communities independent of our measure of littoral habitat alteration. Our results indicated that LRD altered littoral fish communities at the whole‐lake scale through both habitat and non‐habitat‐mediated drivers. 
    more » « less
  5. Abstract Habitat loss is rarely truly random and often occurs selectively with respect to the plant species comprising the habitat. Such selective habitat removal that decreases plant species diversity, that is, habitat simplification or homogenization, may have two negative effects on other species. First, the reduction in plant community size (number of individuals) represents habitat loss for species at higher trophic levels who use plants as habitat. Second, when plants are removed selectively, the resulting habitat simplification decreases the diversity of resources available to species at higher trophic levels. It follows that habitat loss combined with simplification will reduce biodiversity more than habitat loss without simplification. To test this, we experimentally implemented two types of habitat loss at the plant community level and compared biodiversity of resident arthropods between habitat loss types. In the first type of habitat loss, we reduced habitats by 50% nonselectively, maintaining original relative abundance and diversity of plant species and therefore habitat and resource diversity for arthropods. In the second type of habitat loss, we reduced habitats by 50% selectively, removing all but one common plant species, dramatically simplifying habitat and resources for arthropods. We replicated this experiment across three common plant species:Asclepias tuberosa,Solidago altissima, andBaptisia alba. While habitat loss with simplification reduced arthropod species richness compared with habitat loss without simplification, neither type of habitat loss affected diversity, measured as effective number of species (ENS), or species evenness as compared with controls. Instead, differences in ENS and evenness were explained by the identity of the common plant species. Our results indicate that the quality of remaining habitat, in our case plant species identity, may be more important for multi‐trophic diversity than habitat diversity per se. 
    more » « less