skip to main content


Title: On Caching with Finite Blocklength Coding for Secrecy over the Binary Erasure Wiretap Channel
In this paper, we show that caching can aid in achieving secure communications by considering a wiretap scenario where the transmitter and legitimate receiver share access to a secure cache, and an eavesdropper is able to tap transmissions over a binary erasure wiretap channel during the delivery phase of a caching protocol. The scenario under consideration gives rise to a new channel model for wiretap coding that allows the transmitter to effectively choose a subset of bits to erase at the eavesdropper by caching the bits ahead of time. The eavesdropper observes the remainder of the coded bits through the wiretap channel for the general case. In the wiretap type-II scenario, the eavesdropper is able to choose a set of revealed bits only from the subset of bits not cached. We present a coding approach that allows efficient use of the cache to realize a caching gain in the network, and show how to use the cache to optimize the information theoretic security in the choice of a finite blocklength code and the choice of the cached bit set. To our knowledge, this is the first work on explicit algorithms for secrecy coding in any type of caching network.  more » « less
Award ID(s):
1910812
NSF-PAR ID:
10294932
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 Wireless Telecommunications Symposium (WTS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model. 
    more » « less
  2. We investigate the secure degrees of freedom (s.d.o.f.) of three new channel models: broadcast channel with combating helpers, interference channel with selfish users, and multiple access wiretap channel with deviating users. The goal of introducing these channel models is to investigate various malicious interactions that arise in networks, including active adversaries. That is in contrast with the common assumption in the literature that the users follow a certain protocol altruistically and transmit both message-carrying and cooperative jamming signals in an optimum manner. In the first model, over a classical broadcast channel with confidential messages (BCCM), there are two helpers, each associated with one of the receivers. In the second model, over a classical interference channel with confidential messages (ICCM), there is a helper and users are selfish. By casting each problem as an extensive-form game and applying recursive real interference alignment, we show that, for the first model, the combating intentions of the helpers are neutralized and the full s.d.o.f. is retained; for the second model, selfishness precludes secure communication and no s.d.o.f. is achieved. In the third model, we consider the multiple access wiretap channel (MAC-WTC), where multiple legitimate users wish to have secure communication with a legitimate receiver in the presence of an eavesdropper. We consider the case when a subset of users deviate from the optimum protocol that attains the exact s.d.o.f. of this channel. We consider two kinds of deviation: when some of the users stop transmitting cooperative jamming signals, and when a user starts sending intentional jamming signals. For the first scenario, we investigate possible responses of the remaining users to counteract such deviation. For the second scenario, we use an extensive-form game formulation for the interactions of the deviating and well-behaving users. We prove that a deviating user can drive the s.d.o.f. to zero; however, the remaining users can exploit its intentional jamming signals as cooperative jamming signals against the eavesdropper and achieve an optimum s.d.o.f. 
    more » « less
  3. Data security plays a crucial role in all areas of data transmission, processing, and storage. This paper considers security in eavesdropping attacks over wireless communication links in aeronautical telemetry systems. Data streams in these systems are often encrypted by traditional encryption algorithms such as the Advanced Encryption Standard (AES). Here, we propose a secure coding technique for the integrated Network Enhanced Telemetry (iNET) communications system that can be coupled with modern encryption schemes. We consider a wiretap scenario where there are two telemetry links between a test article (TA) and a legitimate receiver, or ground station (GS). We show how these two links can be used to transmit both encrypted and unencrypted data streams while keeping both streams secure. A single eavesdropper is assumed who can tap into both links through its noisy channel. Since our scheme does not require encryption of the unencrypted data stream, the proposed scheme offers the ability to reduce the size of the required secret key while keeping the transmitted data secure. 
    more » « less
  4. This paper considers secure communication in the presence of an eavesdropper and a malicious jammer. The jammer is assumed to be oblivious of the communication signals emitted by the legitimate transmitter(s) but can employ any jamming strategy subject to a given power constraint and shares her jamming signal with the eavesdropper. Four such models are considered: (i) the Gaussian point-to-point wiretap channel; (ii) the Gaussian multiple-access wiretap channel; (iii) the Gaussian broadcast wiretap channel; and (iv) the Gaussian symmetric interference wiretap channel. The use of pre-shared randomness between the legitimate users is not allowed in our models. Inner and outer bounds are derived for these four models. For (i), the secrecy capacity is obtained. For (ii) and (iv) under a degraded setup, the optimal secrecy sum-rate is characterized. Finally, for (iii), ranges of model parameter values for which the inner and outer bounds coincide are identified. 
    more » « less
  5. We consider the multiple-input multiple-output (MIMO) wiretap channel with intersymbol interference (ISI) in which a transmitter (Alice) wishes to securely communicate with a receiver (Bob) in presence of an eavesdropper (Eve). We focus on the practically relevant setting in which there is no channel state information (CSI) at Alice about either of the channels to Bob or Eve, except statistical information about the ISI channels (i.e., Alice only knows the effective number of ISI taps). The key contribution of this work is to show that even with no CSI at Alice, positive secure degrees of freedom (SDoF) are achievable by carefully exploiting a) the heterogeneity of the ISI links to Bob and Eve, and b) the relative number of antennas at all the three terminals. To this end, we propose a novel achievable scheme that carefully mixes information and artificial noise symbols in order to exploit ISI heterogeneity to achieve positive SDoF. To the best of our knowledge, this is the first work to explore the idea of exploiting ISI channel length heterogeneity to achieve positive SDoF for the MIMO wiretap channel with no CSI at the legitimate transmitter. 
    more » « less