skip to main content

Title: A first empirical analysis of population stability in North America using radiocarbon records
Questions regarding population stability among animals and plants are fundamental to population ecology, yet this has not been a topic studied by archeologists focusing on prehistoric human populations. This is an important knowledge gap. The fluctuation of human populations over decades to centuries – population instability – may constrain the expansion of human economies. A first step toward describing basic patterns of population stability would be to identify sizes of fluctuations through time, since smaller fluctuations are more stable than larger fluctuations. We conduct a biogeographic analysis of the long-term stability of human societies in North America using a continental scale radiocarbon dataset. Our analysis compares the stability of summed calibrated radiocarbon date probability distributions (SPDs) with subsistence strategies and modeled climate stability between 6000 and 300 BP. This coarse-grained analysis reveals general trends regarding the stability of human systems in North America that future studies may build upon. Our results demonstrate that agricultural sequences have more stable SPDs than hunter-gatherer sequences in general, but agricultural sequences also experience rare, extreme increases and decreases in SPDs not seen among hunter-gatherers. We propose that the adoption of agriculture has the unintended consequence of increasing population density and stability over most time more » scales, but also increases the vulnerability of populations to large, rare changes. Conversely, hunter-gatherer systems remain flexible and less vulnerable to large population changes. Climate stability may have an indirect effect on long-term population stability, and climate shocks may be buffered by other aspects of subsistence strategies prior to affecting human demography. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1822033
Publication Date:
NSF-PAR ID:
10295057
Journal Name:
The Holocene
Volume:
30
Issue:
9
Page Range or eLocation-ID:
1345 to 1359
ISSN:
0959-6836
Sponsoring Org:
National Science Foundation
More Like this
  1. Ercolini, Danilo (Ed.)
    ABSTRACT Dietary polyphenols can significantly benefit human health, but their bioavailability is metabolically controlled by human gut microbiota. To facilitate the study of polyphenol metabolism for human gut health, we have manually curated experimentally characterized polyphenol utilization proteins (PUPs) from published literature. This resulted in 60 experimentally characterized PUPs (named seeds) with various metadata, such as species and substrate. Further database search found 107,851 homologs of the seeds from UniProt and UHGP (unified human gastrointestinal protein) databases. All PUP seeds and homologs were classified into protein classes, families, and subfamilies based on Enzyme Commission (EC) numbers, Pfam (protein family) domains,more »and sequence similarity networks. By locating PUP homologs in the genomes of UHGP, we have identified 1,074 physically linked PUP gene clusters (PGCs), which are potentially involved in polyphenol metabolism in the human gut. The gut microbiome of Africans was consistently ranked the top in terms of the abundance and prevalence of PUP homologs and PGCs among all geographical continents. This reflects the fact that dietary polyphenols are consumed by the African population more commonly than by other populations, such as Europeans and North Americans. A case study of the Hadza hunter-gatherer microbiome verified the feasibility of using dbPUP to profile metagenomic data for biologically meaningful discovery, suggesting an association between diet and PUP abundance. A Pfam domain enrichment analysis of PGCs identified a number of putatively novel PUP families. Lastly, a user-friendly web interface ( https://bcb.unl.edu/dbpup/ ) provides all the data online to facilitate the research of polyphenol metabolism for improved human health. IMPORTANCE Long-term consumption of polyphenol-rich foods has been shown to lower the risk of various human diseases, such as cardiovascular diseases, cancers, and metabolic diseases. Raw polyphenols are often enzymatically processed by gut microbiome, which contains various polyphenol utilization proteins (PUPs) to produce metabolites with much higher bioaccessibility to gastrointestinal cells. This study delivered dbPUP as an online database for experimentally characterized PUPs and their homologs in human gut microbiome. This work also performed a systematic classification of PUPs into enzyme classes, families, and subfamilies. The signature Pfam domains were identified for PUP families, enabling conserved domain-based PUP annotation. This standardized sequence similarity-based PUP classification system offered a guideline for the future inclusion of new experimentally characterized PUPs and the creation of new PUP families. An in-depth data analysis was further conducted on PUP homologs and physically linked PUP gene clusters (PGCs) in gut microbiomes of different human populations.« less
  2. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasingmore »in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial N export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018)« less
  3. Established chronologies indicate a long-term ‘Hoabinhian’ hunter-gatherer occupation of Mainland Southeast Asia during the Terminal Pleistocene to Mid-Holocene (45 000–3000 years ago). Here, the authors re-examine the ‘Hoabinhian’ sequence from north-west Thailand using new radiocarbon and luminescence data from Spirit Cave, Steep Cliff Cave and Banyan Valley Cave. The results indicate that hunter-gatherers exploited this ecologically diverse region throughout the Terminal Pleistocene and the Pleistocene–Holocene transition, and into the period during which agricultural lifeways emerged in the Holocene. Hunter-gatherers did not abandon this highland region of Thailand during periods of environmental and socioeconomic change.
  4. Animal foraging and competition are defined by the partitioning of three primary niche axes: space, time, and resources. Human disturbance is rapidly altering the spatial and temporal niches of animals, but the impact of humans on resource consumption and partitioning—arguably the most important niche axis—is poorly understood. We assessed resource consumption and trophic niche partitioning as a function of human disturbance at the individual, population, and community levels using stable isotope analysis of 684 carnivores from seven communities in North America. We detected significant responses to human disturbance at all three levels of biological organization: individual carnivores consumed more humanmore »food subsidies in disturbed landscapes, leading to significant increases in trophic niche width and trophic niche overlap among species ranging from mesocarnivores to apex predators. Trophic niche partitioning is the primary mechanism regulating coexistence in many communities, and our results indicate that humans fundamentally alter resource niches and competitive interactions among terrestrial consumers. Among carnivores, niche overlap can trigger interspecific competition and intraguild predation, while the consumption of human foods significantly increases human–carnivore conflict. Our results suggest that human disturbances, especially in the form of food subsidies, may threaten carnivores by increasing the probability of both interspecific competition and human–carnivore conflict. Ultimately, these findings illustrate a potential decoupling of predator–prey dynamics, with impacts likely cascading to populations, communities, and ecosystems.

    « less
  5. Quaternary climate change has been strongly linked to distributional shifts and recent species diversification. Montane species, in particular, have experienced enhanced isolation and rapid genetic divergence during glacial fluctuations, and these processes have resulted in a disproportionate number of neo-endemic species forming in high elevation habitats. In temperate montane environments, a general model of alpine population history is well supported, where cold-specialized species track favorable climate conditions downslope during glacial episodes and upslope during warmer interglacial periods, which leads to a climate-driven population or species diversification pump. However, it remains unclear how geography mediates distributional changes and whether certain episodesmore »of glacial history have differentially impacted rates of diversification. We address these questions by examining phylogenomic data in a North American clade of flightless, cold-specialized insects, the ice crawlers (Insecta: Grylloblattodea: Grylloblattidae: Grylloblatta). These low vagility organisms have the potential to reveal highly localized refugia and patterns of spatial recolonization, as well as a longer history of in situ diversification. Using continuous phylogeographic analysis of species groups, we show that all species tend to retreat to nearby low elevation habitats across western North America during episodes of glaciation, but species at high latitude exhibit larger distributional shifts. Lineage diversification was examined over the course of the Neogene and Quaternary periods, with statistical analysis supporting a direct association between climate variation and diversification rate. Major increases in lineage diversification appear correlated to warm and dry periods, rather than extreme glacial events. Finally, we identify substantial cryptic diversity among ice crawlers, leading to high endemism across their range. This diversity provides new insights into highly localized glacial refugia for cold-specialized species across western North America.« less