skip to main content


Title: Complex variation of trabecular bone structure in the proximal humerus and femur of five modern human populations
Abstract Objective

This project investigates trabecular bone structural variation in the proximal humerus and femur of hunter‐gatherer, mixed‐strategy agricultural, medieval, and human groups to address three questions: (a) What is the extent of trabecular bone structural variation in the humerus and femur between populations with different inferred activity levels? (b) How does variation in the proximal humerus relate to variation in the proximal femur? (c) Are trabecular bone microstructural variables sexually dimorphic?

Methods

The proximal humerus and femur of 73 adults from five human groups with distinct subsistence strategies were scanned using a micro‐computed tomography system. Centralized volumes of interest within the humeral and femoral heads were extracted and analyzed to quantify bone volume fraction, trabecular thickness, trabecular separation, connectivity density, degree of anisotropy, and bone surface density.

Results

In the humerus and femur, groups with the highest inferred activity levels have higher bone volume fraction and trabecular thickness, and lower bone surface density than those with lower inferred activity levels. However, the humeral pattern does not exactly mirror that of the femur, which demonstrates a steeper gradient of difference between subsistence groups. No significant differences were identified in trabecular separation. No consistent patterns of sexual dimorphism were present in the humerus or femur.

Conclusions

Reduced skeletal robusticity of proximal humeral and femoral trabecular bone corresponds with reduced activity level inferred from subsistence strategy. However, human trabecular bone structural variation is complex and future work should explore how other factors (diet, climate, genetics, disease load, etc.), in addition to activity, influence bone structural variation.

 
more » « less
Award ID(s):
1719187 1719140
NSF-PAR ID:
10462389
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
168
Issue:
1
ISSN:
0002-9483
Page Range / eLocation ID:
p. 104-118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compensatory growth (CG) is accelerated growth that occurs when food availability increases after food restriction. This rapid growth may be associated with sublethal consequences. In this study, we investigated the effects of food restriction and subsequent realimentation and CG on bone structure in juvenile green turtles (Chelonia mydas). Turtles were fed ad libitum food for 12 weeks (AL), restricted food for 12 weeks (R), or restricted food for 5 weeks followed by ad libitum food for 7 weeks (R-AL). R-AL turtles demonstrated partial CG via enhanced food conversion efficiency (FCE) upon realimentation. After the 12th week, gross morphology (GM), microarchitecture, and mineralization of the right humerus of each turtle were analyzed. Many GM measurements (including proximal and maximal bone lengths, bone widths, and shaft thickness), most measurements of bone microarchitecture (excluding cortical and trabecular thickness and trabecular separation), and all mineralization measurements were labile in response to intake. We examined the possibility that changes in nutrient allocation to bone structure during realimentation facilitated CG in previously food-restricted turtles. Restoration of bone lengths was prioritized over restoration of bone widths during CG. Furthermore, restoration of trabecular number, connectivity density, and bone volume fraction was prioritized over restoration of cortical bone volume fraction. Finally, diaphyseal bone mineralization was partially restored, whereas no restoration of epiphyseal bone mineralization occurred during CG. Shifts in nutrient allocation away from certain bone attributes during food restriction that were not rectified when food availability increased probably provided an energy surplus that enhanced the conversion of food to growth and thus powered the CG response. Our study revealed how resource allocation to various bone attributes is prioritized as nutritional conditions change during development. These “priority rules” may have detrimental consequences later in life, indicating that conservation of green turtle foraging grounds should be given high priority.

     
    more » « less
  2. Synopsis

    Mammals exhibit a diverse range of limb morphologies that are associated with different locomotor ecologies and structural mechanics. Much remains to be investigated, however, about the combined effects of locomotor modes and scaling on the external shape and structural properties of limb bones. Here, we used squirrels (Sciuridae) as a model clade to examine the effects of locomotor mode and scaling on the external shape and structure of the two major limb bones, the humerus and femur. We quantified humeral and femoral morphologies using 3D geometric morphometrics and bone structure analyses on a sample of 76 squirrel species across their four major ecotypes. We then used phylogenetic generalized linear models to test how locomotor ecology, size, and their interaction influenced morphological traits. We found that size and locomotor mode exhibit different relationships with the external shape and structure of the limb bones, and that these relationships differ between the humerus and femur. External shapes of the humerus and, to a lesser extent, the femur are best explained by locomotor ecology rather than by size, whereas structures of both bones are best explained by interactions between locomotor ecology and scaling. Interestingly, the statistical relationships between limb morphologies and ecotype were lost when accounting for phylogenetic relationships among species under Brownian motion. That assuming Brownian motion confounded these relationships is not surprising considering squirrel ecotypes are phylogenetically clustered; our results suggest that humeral and femoral variation partitioned early between clades and their ecomorphologies were maintained to the present. Overall, our results show how mechanical constraints, locomotor ecology, and evolutionary history may enact different pressures on the shape and structure of limb bones in mammals.

     
    more » « less
  3. ABSTRACT

    Bone remodeling is at least partially mediated by the mechanical environment created by an animal's behavior. Here, we test the hypothesis that bone remodeling is primarily induced by high magnitude loads, likely encountered during leaping/bounding behaviors. Osteon population density (OPD), osteon cross‐sectional area (On.Ar), and relative osteonal area (%HAV) were measured from femoral and humeral midshaft thin sections of four cercopithecids (N = 5 per species) from Taï Forest, Côte d'Ivoire:Colobus polykomos,Piliocolobus badius,Cercopithecus diana, andCercocebus atys. All species are generalized quadrupeds but vary in leaping frequency and overall activity budget. Differences between taxa with high (C. polykomosandP. badius) and low leaping frequency (C. dianaandC. atys) were assessed via a phylogenetically informed generalized linear mixed model using Markov Chain Monte Carlo methods. Femoral OPD and %HAV are greater in the high frequency leapers than in low frequency leapers, suggesting that frequent high magnitude loads engender remodeling, however, there is no similar pattern in the humerus, which presumably also experiences high magnitude loads during leaping. Additionally, OPD and %HAV are greater in the humerus than the femur, despite load magnitude being presumably higher in the femur. These results provide conflicting support for hypotheses about load magnitude and load frequency as they relate to bone remodeling activity. Future work is proposed to parse out the respective effects of load magnitude and frequency on bone remodeling. Anat Rec, 302:1116–1126, 2019. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  4. Abstract Objectives

    The objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions.

    Methods

    We use a combination of automatic mesh registration, point‐cloud correspondence registration, andP‐value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies.

    Results

    We found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter‐gatherers) and Norris Farms (mixed‐strategy agriculturalists) are very similar, but differ in magnitude. The hunter‐gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running.

    Conclusions

    We conclude that comparing site‐specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three‐dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment.

     
    more » « less
  5. Abstract

    Trabecular bone structure in adulthood is a product of a process of modelling during ontogeny and remodelling throughout life. Insight into ontogeny is essential to understand the functional significance of trabecular bone structural variation observed in adults. The complex shape and loading of the human calcaneus provides a natural experiment to test the relationship between trabecular morphology and locomotor development. We investigated the relationship between calcaneal trabecular bone structure and predicted changes in loading related to development of gait and body size in growing children. We sampled three main trabecular regions of the calcanei using micro‐computed tomography scans of 35 individuals aged between neonate to adult from the Norris Farms #36 site (1300 AD, USA) and from Cambridge (1200–1500 AD, UK). Trabecular properties were calculated in volumes of interest placed beneath the calcaneocuboid joint, plantar ligaments, and posterior talar facet. At birth, thin trabecular struts are arranged in a dense and relatively isotropic structure. Bone volume fraction strongly decreases in the first year of life, whereas anisotropy and mean trabecular thickness increase. Dorsal compressive trabecular bands appear around the onset of bipedal walking, although plantar tensile bands develop prior to predicted propulsive toe‐off. Bone volume fraction and anisotropy increase until the age of 8, when gait has largely matured. Connectivity density gradually reduces, whereas trabeculae gradually thicken from birth until adulthood. This study demonstrates that three different regions of the calcaneus develop into distinct adult morphologies through varying developmental trajectories. These results are similar to previous reports of ontogeny in human long bones and are suggestive of a relationship between the mechanical environment and trabecular bone architecture in the human calcaneus during growth. However, controlled experiments combined with more detailed biomechanical models of gait maturation are necessary to establish skeletal markers linking growth to loading. This has the potential to be a novel source of information for understanding loading levels, activity patterns, and perhaps life history in the fossil record.

     
    more » « less