skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Urban Sustainability with Data, Modeling, and Simulation: Proceedings of a Workshop
On January 30-31, 2019 the Board on Mathematical Sciences and Analytics, in collaboration with the Board on Energy and Environmental Systems and the Computer Science and Telecommunications Board, convened a workshop in Washington, D.C. to explore the frontiers of mathematics and data science needs for sustainable urban communities. The workshop strengthened the emerging interdisciplinary network of practitioners, business leaders, government officials, nonprofit stakeholders, academics, and policy makers using data, modeling, and simulation for urban and community sustainability, and addressed common challenges that the community faces. Presentations highlighted urban sustainability research efforts and programs under way, including research into air quality, water management, waste disposal, and social equity and discussed promising urban sustainability research questions that improved use of big data, modeling, and simulation can help address. This publication summarizes the presentation and discussion of the workshop.  more » « less
Award ID(s):
1820527
PAR ID:
10295194
Author(s) / Creator(s):
Date Published:
Journal Name:
Publications listing National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council
ISSN:
0276-0533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus. 
    more » « less
  2. null (Ed.)
    The Board on Science Education and the Board on Mathematical Sciences and Analytics of the National Academies of Sciences, Engineering, and Medicine convened the Workshop on Increasing Student Success in Developmental Mathematics on March 18-19, 2019. The Workshop explored how to best support all students in postsecondary mathematics, with particular attention to students who are unsuccessful in developmental mathematics and with an eye toward issues of access to promising reforms and equitable learning environments. The two-day workshop was designed to bring together a variety of stakeholders, including experts who have developed and/or implemented new initiatives to improve the mathematics education experience for students. The overarching goal of the workshop was to take stock of the mathematics education community's progress in this domain. Participants examined the data on students who are well-served by new reform structures in developmental mathematics and discussed various cohorts of students who are not currently well served - those who even with access to reforms do not succeed and those who do not have access to a reform due to differential access constraints. Throughout the workshop, participants also explored promising approaches to bolstering student outcomes in mathematics, focusing especially on research and data that demonstrate the success of these approaches; deliberated and discussed barriers and opportunities for effectively serving all students; and outlined some key directions of inquiry intended to address the prevailing research and data needs in the field. This publication summarizes the presentations and discussion of the workshop. 
    more » « less
  3. This policy brief synthesizes the findings from a three-day workshop held at University of Arizona in April 2023, focused on identifying the governance and policy challenges to a NZUW future in the Southwest US. The workshop involved water managers, non-governmental organizations, and academics from across the Southwest, and was part of a four-year National Science Foundation Research Coordination Network (RCN) grant under the Dynamic and Integrated Socio-Environmental Systems (DISES) Program. The ultimate purpose of this DISES-RCN is to define and examine the viability and value of pursuing a NZUW approach in arid and semi-arid urban scenarios of Albuquerque, Denver, Los Angeles, and Tucson, all serviced by the Colorado River. A NZUW approach meets the needs of a given community with a locally available and sustainable water supply, without detriment to interconnected systems or long-term water supply (1). It is an integrative approach that uses progressive targets and a quantitative assessment framework to adapt to challenges created by multiple drivers of change in the urban water system. The findings detailed in this policy brief have been published in a recent ACS ES&T Water article titled “Advancing a Net Zero Urban Water Future in the United States Southwest: Governance and Policy Challenges and Future Needs” (2). This RCN is spearheaded by the University of Arizona, Colorado School of Mines, Colorado State University, University of New Mexico, and University of California Los Angeles, in collaboration with Tucson Water, Denver Water, Albuquerque Bernalillo County Water Utility Authority, and Los Angeles Department of Water and Power. The NZUW research network aims to improve the sustainability, resilience, and adaptation of urban water systems impacted by the Colorado river crisis and the recent reductions in their water allocations imposed by the Bureau of Reclamation (3). 
    more » « less
  4. While inquiry in operations research (OR) modeling of urban planning processes is long-standing, on the whole, the OR discipline has not influenced urban planning practice, teaching and scholarship at a level of other domains such as public policy and information technology. Urban planning presents contemporary challenges that are complex, multi-stakeholder, data-intensive, and ill structured. Could an OR approach which focuses on the complex, emergent nature of cities, the institutional environment in which urban planning strategies are designed and implemented and which puts citizen engagement and a critical approach at the center enable urban planning to better meet these challenges? Based on a review of research and practice in OR and urban planning, we argue that a prospective and prescriptive approach to planning that is inductive in nature and embraces “methodological pluralism” and mixed methods can enable researchers and practitioners develop effective interventions that are equitable and which reflect the concerns of community members and community serving organizations. We discuss recent work in transportation, housing, and community development that illustrates the benefits of embracing an enhanced OR modeling approach both in the framing of the model and in its implementation, while bringing to the fore three cautionary themes. First, a mechanistic application of decision modeling principles rooted in stylized representations of institutions and systems using mathematics and computational methods may not adequately capture the central role that human actors play in developing neighborhoods and communities. Second, as innovations such as the mass adoption of automobiles decades ago led to auto-centric city design show, technological innovations can have unanticipated negative social impacts. Third, the current COVID pandemic shows that approaches based on science and technology alone are inadequate to improving community lives. Therefore, we emphasize the important role of critical approaches, community engagement and diversity, equity, and inclusion in planning approaches that incorporate decision modeling. 
    more » « less
  5. Community and citizen science on climate change-influenced topics offers a way for participants to actively engage in understanding the changes and documenting the impacts. As in broader climate change education, a focus on the negative impacts can often leave participants feeling a sense of powerlessness. In large scale projects where participation is primarily limited to data collection, it is often difficult for volunteers to see how the data can inform decision making that can help create a positive future. In this paper, we propose and test a method of linking community and citizen science engagement to thinking about and planning for the future through scenarios story development using the data collected by the volunteers. We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings. Using qualitative analysis of educator interviews and youth work samples, we found that using a scenario stories development mini-workshop allowed the youth to use their own data and the data from other sites to imagine the future and possible actions to sustain berry resources for their communities. This process allowed youth to exercise key cognitive skills for sustainability, including systems thinking, futures thinking, and strategic thinking. The analysis suggested that youth would benefit from further practicing the skill of envisioning oneself as an agent of change in the environment. Educators valued working with lead scientists on the project and the experience for youth to participate in the interdisciplinary program. They also identified the combination of the berry data collection, analysis and scenarios stories activities as a teaching practice that allowed the youth to situate their citizen science participation in a personal, local and cultural context. The majority of the youth groups pursued some level of stewardship action following the activity. The most common actions included collecting additional years of berry data, communicating results to a broader community, and joining other community and citizen science projects. A few groups actually pursued solutions illustrated in the scenario stories. The pairing of community and citizen science with scenario stories development provides a promising method to connect data to action for a sustainable and resilient future. 
    more » « less