skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1820527

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The effective use of data science - the science and technology of extracting value from data - improves, enhances, and strengthens acquisition decision-making and outcomes. Using data science to support decision making is not new to the defense acquisition community; its use by the acquisition workforce has enabled acquisition and thus defense successes for decades. Still, more consistent and expanded application of data science will continue improving acquisition outcomes, and doing so requires coordinated efforts across the defense acquisition system and its related communities and stakeholders. Central to that effort is the development, growth, and sustainment of data science capabilities across the acquisition workforce. At the request of the Under Secretary of Defense for Acquisition and Sustainment, Empowering the Defense Acquisition Workforce to Improve Mission Outcomes Using Data Science assesses how data science can improve acquisition processes and develops a framework for training and educating the defense acquisition workforce to better exploit the application of data science. This report identifies opportunities where data science can improve acquisition processes, the relevant data science skills and capabilities necessary for the acquisition workforce, and relevant models of data science training and education. 
    more » « less
  2. null (Ed.)
    Biomedical research results in the collection and storage of increasingly large and complex data sets. Preserving those data so that they are discoverable, accessible, and interpretable accelerates scientific discovery and improves health outcomes, but requires that researchers, data curators, and data archivists consider the long-term disposition of data and the costs of preserving, archiving, and promoting access to them. Life Cycle Decisions for Biomedical Data examines and assesses approaches and considerations for forecasting costs for preserving, archiving, and promoting access to biomedical research data. This report provides a comprehensive conceptual framework for cost-effective decision making that encourages data accessibility and reuse for researchers, data managers, data archivists, data scientists, and institutions that support platforms that enable biomedical research data preservation, discoverability, and use. 
    more » « less
  3. null (Ed.)
    Biomedical research data sets are becoming larger and more complex, and computing capabilities are expanding to enable transformative scientific results. The National Institutes of Health's (NIH's) National Library of Medicine (NLM) has the unique role of ensuring that biomedical research data are findable, accessible, interoperable, and reusable in an ethical manner. Tools that forecast the costs of long-term data preservation could be useful as the cost to curate and manage these data in meaningful ways continues to increase, as could stewardship to assess and maintain data that have future value. The National Academies of Sciences, Engineering, and Medicine convened a workshop on July 11-12, 2019 to gather insight and information in order to develop and demonstrate a framework for forecasting long-term costs for preserving, archiving, and accessing biomedical data. Presenters and attendees discussed tools and practices that NLM could use to help researchers and funders better integrate risk management practices and considerations into data preservation, archiving, and accessing decisions; methods to encourage NIH-funded researchers to consider, update, and track lifetime data; and burdens on the academic researchers and industry staff to implement these tools, methods, and practices. This publication summarizes the presentations and discussion of the workshop. 
    more » « less
  4. null (Ed.)
    Data science has the potential to improve defense acquisition processes, which includes the full range of activities related to development, procurement, test and evaluation, deployment, and sustainment of materiel to serve military missions and needs. The Department of Defense (DoD) seeks to capitalize on innovations in data science and analytics to increase the efficiency of acquisition programs to meet rapidly evolving mission needs, identify alternative solutions to long-standing acquisition challenges, enable timely deployment of new systems, and ensure cost containment. To move toward more data-driven decisionmaking within the defense acquisition workforce, DoD seeks to identify necessary data science skills, options for training, and models for building teams with enhanced data capabilities. To identify relevant data science skills and capabilities necessary for the acquisitions workforce and develop a framework for training and educating acquisition professionals, the National Academies of Sciences, Engineering, and Medicine's Board on Mathematical Sciences and Analytics convened a virtual workshop on April 14, 2020. This publication provides a brief overview of the day's activities, panel specific observations or suggestions from individual speakers, and highlights overarching themes. 
    more » « less
  5. null (Ed.)
    Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting. 
    more » « less
  6. Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop. 
    more » « less
  7. null (Ed.)
    On January 30-31, 2019 the Board on Mathematical Sciences and Analytics, in collaboration with the Board on Energy and Environmental Systems and the Computer Science and Telecommunications Board, convened a workshop in Washington, D.C. to explore the frontiers of mathematics and data science needs for sustainable urban communities. The workshop strengthened the emerging interdisciplinary network of practitioners, business leaders, government officials, nonprofit stakeholders, academics, and policy makers using data, modeling, and simulation for urban and community sustainability, and addressed common challenges that the community faces. Presentations highlighted urban sustainability research efforts and programs under way, including research into air quality, water management, waste disposal, and social equity and discussed promising urban sustainability research questions that improved use of big data, modeling, and simulation can help address. This publication summarizes the presentation and discussion of the workshop. 
    more » « less
  8. null (Ed.)
    The National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11–12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop. 
    more » « less
  9. null (Ed.)
    The Board on Science Education and the Board on Mathematical Sciences and Analytics of the National Academies of Sciences, Engineering, and Medicine convened the Workshop on Increasing Student Success in Developmental Mathematics on March 18-19, 2019. The Workshop explored how to best support all students in postsecondary mathematics, with particular attention to students who are unsuccessful in developmental mathematics and with an eye toward issues of access to promising reforms and equitable learning environments. The two-day workshop was designed to bring together a variety of stakeholders, including experts who have developed and/or implemented new initiatives to improve the mathematics education experience for students. The overarching goal of the workshop was to take stock of the mathematics education community's progress in this domain. Participants examined the data on students who are well-served by new reform structures in developmental mathematics and discussed various cohorts of students who are not currently well served - those who even with access to reforms do not succeed and those who do not have access to a reform due to differential access constraints. Throughout the workshop, participants also explored promising approaches to bolstering student outcomes in mathematics, focusing especially on research and data that demonstrate the success of these approaches; deliberated and discussed barriers and opportunities for effectively serving all students; and outlined some key directions of inquiry intended to address the prevailing research and data needs in the field. This publication summarizes the presentations and discussion of the workshop. 
    more » « less
  10. null (Ed.)
    One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science. 
    more » « less