skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Cost, Perspective Invariant and Personalized Thermal Comfort Estimation: Poster Abstract
In this poster abstract, we present a thermal comfort estimation system using low-cost thermal camera based sensor nodes. This system extracts perspective invariant, non-intrusive thermal measurements, is easily deployable and low-cost, and can incorporate individual thermal feedback for more personalized thermal comfort estimates. In comparison with baseline methods, our system is able to improve thermal comfort estimates on the ASHRAE 7-point thermal sensation scale by up to 64% over baseline methods.  more » « less
Award ID(s):
1943396 1837022
PAR ID:
10295257
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 20th International Conference on Information Processing in Sensor Networks
Page Range / eLocation ID:
396 to 397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In commercial buildings, occupant thermal comfort is a key factor that must be optimized to provide a comfortable and productive work environment. However, current methods largely estimate thermal comfort based on preset models which do not incorporate real-time measurements or individual thermal preferences. In this work, we present a scalable system for estimating personalized thermal comfort using low-cost thermal camera based sensor nodes. This system extracts non-intrusive thermal measurements, is robust to different perspectives and environments, is easily deployable and low-cost, and can incorporate individual thermal feedback for more personalized thermal comfort estimates. In comparison with baseline methods, our system is able to improve thermal comfort estimates on the ASHRAE 7-point thermal sensation scale by 64% over baseline methods. 
    more » « less
  2. Understanding occupants’ thermal sensation and comfort is essential to defining the operational settings for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings. Due to the continuous impact of human and environmental factors, occupants’ thermal sensation and comfort level can change over time. Thus, to dynamically control the environment, thermal comfort should be monitored in real time. This paper presents a novel non-intrusive infrared thermography framework to estimate an occupant’s thermal comfort level by measuring skin temperature collected from different facial regions using low- cost thermal cameras. Unlike existing methods that rely on placing sensors directly on humans for skin temperature measurement, the proposed framework is able to detect the presence of occupants, extract facial regions, measure skin temperature features, and interpret thermal comfort conditions with minimal interruption of the building occupants. The method is validated by collecting thermal comfort data from a total of twelve subjects under cooling, heating and steady-state experiments. The results demonstrate that ears, nose and cheeks are most indicative of thermal comfort and the proposed framework can be used to assess occupants’ thermal comfort with an average accuracy of 85%. 
    more » « less
  3. It is well established that thermal comfort is an influential factor in human health and wellbeing. Uncomfortable thermal environments can reduce occupants’ comfort and productivity, and cause symptoms of sick building syndrome. To harness the built environment as a medium to support human health, well-being, and engagement, it is significantly important to understand occupants’ thermal comfort in real time. To this end, this study proposes a non-intrusive method to collect occupants’ facial skin temperature and interpret their thermal comfort conditions by fusing the thermal and RGB-D images collected from multiple low-cost thermographic and Kinect sensors. This study distinguishes from existing methods of thermal comfort assessment in three ways: 1) it is a truly non-intrusive data collection approach which has a minimal interruption or participation of building occupants; 2) the proposed approach can simultaneously identify and interpret multiple occupants’ thermal comfort; 3) it uses low-cost thermographic and RGB-D cameras which can be rapidly deployed and reconfigured to adapt to various settings. This approach was experimentally evaluated in a transient heating environment (room temperature increased from 23 to 27 °C) to verify its applicability in real operational built environments. In total, all 6 subjects observed moderate to strong positive correlations between the ambient room temperature and subjects’ facial skin temperature collected using the proposed approach. Additionally, all 6 subjects have voted different thermal sensations at the beginning (the first 5 minutes) and at the end (the last 5 minutes) of the heating experiment, which can be reflected by the significant differences in the mean skin temperature of these two periods (p < .001). Results of this pilot study demonstrate the feasibility of applying the proposed non-intrusive approach to real multi-occupancy environments to dynamically interpret occupants’ thermal comfort and optimize the operation of building heating, ventilation and air conditioning (HVAC) systems. 
    more » « less
  4. Understanding occupants’ thermal comfort is essential for the effective operation of Heating, Ventilation, and Air Conditioning (HVAC) systems. Existing studies of the “human-in-the-loop” HVAC control generally suffer from: (1) excessive reliance on cumbersome human feedback; and (2) intrusiveness caused by conventional data collection methods. To address these limitations, this paper investigates the low-cost thermal camera as a non-intrusive approach to assess thermal comfort in real time using facial skin temperature. The framework developed can automatically detect occupants, extract facial regions, measure skin temperature, and interpret thermal comfort with minimal interruption or participation of occupants. The framework is validated using the facial skin temperature collected from twelve occupants. Personal comfort models trained from different machine learning algorithms are compared and results show that Random Forest model can achieve an accuracy of 85% and also suggest that the skin temperature of ears, nose, and cheeks are most indicative of thermal comfort. 
    more » « less
  5. This paper proposes a home energy management system (HEMS) while considering the residential occupant’s clothing integrated thermal comfort and electrical vehicles (EV) state-of-charge (SOC) concern. An adaptive dynamic program- ming (ADP) based HEMS model is proposed to optimally determine the setpoints of heating, ventilation, air conditioning (HVAC), the donning/doffing decisions for the clothing conditions and charging/discharging of EV while taking into account the uncertainties in outside temperature and EV arrival SOC. We use model predictive control (MPC) to simulate a multi-day energy management of a residential house equipped with the proposed HEMS. The proposed HEMS is compared with a baseline case without the HEMS. The simulation results show that a 47.5% of energy cost saving can be achieved by the proposed HEMS while maintaining satisfactory occupant thermal comfort and negligible EV SOC concerns. 
    more » « less