skip to main content


Title: Synthetic Strategies for Trapping the Elusive trans -Dirhodium(II,II) Formamidinate Isomer: Effects of Cis versus Trans Geometry on the Photophysical Properties
Award ID(s):
1800395
NSF-PAR ID:
10295393
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
59
Issue:
4
ISSN:
0020-1669
Page Range / eLocation ID:
2255 to 2265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The title compounds, [Mo(C 5 H 5 )(COCH 3 )(C 6 H 12 N 3 P)(CO) 2 ], (1), and [Mo(C 5 H 5 )(COCH 3 )(C 9 H 16 N 3 O 2 P)(C 6 H 5 ) 2 ))(CO) 2 ], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C 5 H 5 )(CO) 3 (CH 3 )]. The molecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans -disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substantially. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the molecules into centrosymmetrical dimers through C—H...O interactions with a cyclopentadienyl ligand of a neighboring molecule, and these dimers are linked into layers parallel to (100) by C—H...O interactions between the molybdenum acetyl and the cyclopentadienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H...O interactions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the molecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H...O interactions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101). 
    more » « less
  2. The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures. 
    more » « less
  3. The title compound, [Mo(C 5 H 5 )(C 2 H 3 O)(C 24 H 27 P)(CO) 2 ], was prepared by reaction of [Mo(C 5 H 5 )(CO) 3 (CH 3 )] with tris(3,5-dimethylphenyl)phosphane. The complex exhibits a four-legged piano-stool geometry with trans -disposed acetyl and phosphane ligands. The molecular geometry is nearly identical to that of the triphenylphosphane derivative, but introduction of methyl groups on the aromatic phosphane substituents significantly impacts supramolecular organization. In the crystal, non-classical C—H...O interactions involving the acetyl carbonyl group lead to a chain motif along [010], and another set of C—H...O close contacts join inversion-related molecules. 
    more » « less