skip to main content

Title: Processing-in-Memory Acceleration of MAC-based Applications Using Residue Number System: A Comparative Study
Processing-in-memory (PIM) has raised as a viable solution for the memory wall crisis and has attracted great interest in accelerating computationally intensive AI applications ranging from filtering to complex neural networks. In this paper, we try to take advantage of both PIM and the residue number system (RNS) as an alternative for the conventional binary number representation to accelerate multiplication-and-accumulations (MACs), primary operations of target applications. The PIM architecture utilizes the maximum internal bandwidth of memory chips to realize a local and parallel computation to eliminates the off-chip data transfer. Moreover, RNS limits inter-digit carry propagation by performing arithmetic operations on small residues independently and in parallel. Thus, we develop a PIM-RNS, entitled PRIMS, and analyze the potential of intertwining PIM architecture with the inherent parallelism of the RNS arithmetic to delineate the opportunities and challenges. To this end, we build a comprehensive device-to-architecture evaluation framework to quantitatively study this problem considering the impact of PIM technology for a well-known three-moduli set as a case study.  more » « less
Award ID(s):
2005209 2003749
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2021 on Great Lakes Symposium on VLSI
Page Range / eLocation ID:
265 to 270
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Processing-in-memory (PIM) architectures attempt to overcome the von Neumann bottleneck by combining computation and storage logic into a single component. The content-addressable parallel processing paradigm (CAPP) from the seventies is an in-situ PIM architecture that leverages content-addressable memories to realize bit-serial arithmetic and logic operations, via sequences of search and update operations over multiple memory rows in parallel. In this paper, we set out to investigate whether the concepts behind classic CAPP can be used successfully to build an entirely CMOS-based, general-purpose microarchitecture that can deliver manyfold speedups while remaining highly programmable. We conduct a full-stack design of a Content-Addressable Processing Engine (CAPE), built out of dense push-rule 6T SRAM arrays. CAPE is programmable using the RISC-V ISA with standard vector extensions. Our experiments show that CAPE achieves an average speedup of 14 (up to 254) over an area-equivalent (slightly under 9mm^2 at 7nm) out-of-order processor core with three levels of caches. 
    more » « less
  2. Stochastic computing (SC) reduces the complexity of computation by representing numbers with long streams of independent bits. However, increasing performance in SC comes with either an increase in area or a loss in accuracy. Processing in memory (PIM) computes data in-place while having high memory density and supporting bit-parallel operations with low energy consumption. In this article, we propose COSMO, an architecture for co mputing with s tochastic numbers in me mo ry, which enables SC in memory. The proposed architecture is general and can be used for a wide range of applications. It is a highly dense and parallel architecture that supports most SC encodings and operations in memory. It maximizes the performance and energy efficiency of SC by introducing several innovations: (i) in-memory parallel stochastic number generation, (ii) efficient implication-based logic in memory, (iii) novel memory bit line segmenting, (iv) a new memory-compatible SC addition operation, and (v) enabling flexible block allocation. To show the generality and efficiency of our stochastic architecture, we implement image processing, deep neural networks (DNNs), and hyperdimensional (HD) computing on the proposed hardware. Our evaluations show that running DNN inference on COSMO is 141× faster and 80× more energy efficient as compared to GPU. 
    more » « less
  3. Nowadays, research topics on AI accelerator designs have attracted great interest, where accelerating Deep Neural Network (DNN) using Processing-in-Memory (PIM) platforms is an actively-explored direction with great potential. PIM platforms, which simultaneously aims to address power- and memory-wall bottlenecks, have shown orders of performance enhancement in comparison to the conventional computing platforms with Von-Neumann architecture. As one direction of accelerating DNN in PIM, resistive memory array (aka. crossbar) has drawn great research interest owing to its analog current-mode weighted summation operation which intrinsically matches the dominant Multiplication-and-Accumulation (MAC) operation in DNN, making it one of the most promising candidates. An alternative direction for PIM-based DNN acceleration is through bulk bit-wise logic operations directly performed on the content in digital memories. Thanks to the high fault-tolerant characteristic of DNN, the latest algorithmic progression successfully quantized DNN parameters to low bit-width representations, while maintaining competitive accuracy levels. Such DNN quantization techniques essentially convert MAC operation to much simpler addition/subtraction or comparison operations, which can be performed by bulk bit-wise logic operations in a highly parallel fashion. In this paper, we build a comprehensive evaluation framework to quantitatively compare and analyze aforementioned PIM based analog and digital approaches for DNN acceleration. 
    more » « less
  4. Today’s systems, rely on sending all the data to the cloud, and then use complex algorithms, such as Deep Neural Networks, which require billions of parameters and many hours to train a model. In contrast, the human brain can do much of this learning effortlessly. Hyperdimensional (HD) Computing aims to mimic the behavior of the human brain by utilizing high dimensional representations. This leads to various desirable properties that other Machine Learning (ML) algorithms lack such as: robustness to noise in the system and simple, highly parallel operations. In this paper, we propose \(\mathsf {HyDREA} \) , a Hy per D imensional Computing system that is R obust, E fficient, and A ccurate. We propose a Processing-in-Memory (PIM) architecture that works in a federated learning environment with challenging communication scenarios that cause errors in the transmitted data. \(\mathsf {HyDREA} \) adaptively changes the bitwidth of the model based on the signal to noise ratio (SNR) of the incoming sample to maintain the accuracy of the HD model while achieving significant speedup and energy efficiency. Our PIM architecture is able to achieve a speedup of 28 × and 255 × better energy efficiency compared to the baseline PIM architecture for Classification and achieves 32 × speed up and 289 × higher energy efficiency than the baseline architecture for Clustering. \(\mathsf {HyDREA} \) is able to achieve this by relaxing hardware parameters to gain energy efficiency and speedup while introducing computational errors. We show experimentally, HD Computing is able to handle the errors without a significant drop in accuracy due to its unique robustness property. For wireless noise, we found that \(\mathsf {HyDREA} \) is 48 × more robust to noise than other comparable ML algorithms. Our results indicate that our proposed system loses less than \(1\% \) Classification accuracy, even in scenarios with an SNR of 6.64. We additionally test the robustness of using HD Computing for Clustering applications and found that our proposed system also looses less than \(1\% \) in the mutual information score, even in scenarios with an SNR under 7 dB , which is 57 × more robust to noise than K-means. 
    more » « less
  5. null (Ed.)
    Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes 44.5% of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. Although conventional network quantization techniques reduce the computing overhead of a base-caller by replacing floating-point multiply-accumulations by cheaper fixed-point operations, it significantly increases the number of systematic errors that cannot be corrected by read votes. The power density of prior nonvolatile memory (NVM)-based PIMs has already exceeded memory thermal tolerance even with active heat sinks, because their power efficiency is severely limited by analog-to-digital converters (ADC). Finally, Connectionist Temporal Classification (CTC) decoding and read voting cost 53.7% of total execution time in a quantized base-caller, and thus became its new bottleneck. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by 6x, throughput per Watt by 11.9x and per mm2 by 7.5x without degrading base-calling accuracy. 
    more » « less