Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.
more »
« less
Weak lensing of Type Ia Supernovae from the Dark Energy Survey
ABSTRACT We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of σ8, and find σ8 =1.2$$^{+0.9}_{-0.8}$$. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA; chosen to match the redshift range we use for this work), and find σ8 =0.8$$^{+1.1}_{-0.7}$$. The comparable uncertainty in σ8 between DES–SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES–SN sample, and improvements in the calibration and data analysis.
more »
« less
- Award ID(s):
- 1815935
- PAR ID:
- 10295415
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 496
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4051 to 4059
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet’s criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015–0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample.more » « less
-
ABSTRACT As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time.more » « less
-
ABSTRACT Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $$2{,}298$$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.more » « less
-
ABSTRACT The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimized coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other four seasons such that each SN has a corresponding deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order ∼27 in g band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multiband photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high-mass hosts at high-redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects.more » « less
An official website of the United States government

