skip to main content

Title: Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave
Abstract Climate change is responsible for increased frequency, intensity, and duration of extreme events, such as marine heatwaves (MHWs). Within eastern boundary current systems, MHWs have profound impacts on temperature-nutrient dynamics that drive primary productivity. Bull kelp ( Nereocystis luetkeana ) forests, a vital nearshore habitat, experienced unprecedented losses along 350 km of coastline in northern California beginning in 2014 and continuing through 2019. These losses have had devastating consequences to northern California communities, economies, and fisheries. Using a suite of in situ and satellite-derived data, we demonstrate that the abrupt ecosystem shift initiated by a multi-year MHW was preceded by declines in keystone predator population densities. We show strong evidence that northern California kelp forests, while temporally dynamic, were historically resilient to fluctuating environmental conditions, even in the absence of key top predators, but that a series of coupled environmental and biological shifts between 2014 and 2016 resulted in the formation of a persistent, altered ecosystem state with low primary productivity. Based on our findings, we recommend the implementation of ecosystem-based and adaptive management strategies, such as (1) monitoring the status of key ecosystem attributes: kelp distribution and abundance, and densities of sea urchins and their predators, (2) developing management more » responses to threshold levels of these attributes, and (3) creating quantitative restoration suitability indices for informing kelp restoration efforts. « less
Authors:
; ; ; ; ; ;
Award ID(s):
2023664 1831937 1538582
Publication Date:
NSF-PAR ID:
10295551
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine ecosystems are vulnerable to climate driven events such as marine heatwaves yet we have a poor understanding of whether they will collapse or recover. Kelp forests are known to be susceptible, and there has been a rise in sea urchin barrens around the world. When temperatures increase so do physiological demands while food resources decline, tightening metabolic constraints. In this case study, we examine red abalone ( Haliotis rufescens ) looking at sublethal impacts and their prospects for recovery within kelp forests that have shifted to sea urchin barrens. Abalone are a recreationally fished species that once thrived in northern California’s bull kelp forests but have recently suffered mass mortalities since the 2014–2016 marine heatwave. Quantitative data exist on the health and reproduction of abalone both prior to and after the collapse. The survivors of the mass mortality show a 2-year lag in body and gonad condition indices. After the lag, body and gonad indexes decreased substantially, as did the relationship between shell length and body weight. Production of mature eggs per female declined by 99% ( p < 0.001), and the number of eggs per gram of female body weight (2,984/g) declined to near zero (9/g). The numbermore »of males with sperm was reduced by 33%, and the sperm abundance score was reduced by 28% ( p = 0.414). We observed that these reductions were for mature eggs and sperm while immature eggs and spermatids were still present in large numbers. In the lab, after reintroduction of kelp, weight gains were quickly lost following a second starvation period. This example illustrates how climate-driven declines in foundation species can suppress recovery of the system by impacting body condition and future reproduction of surviving individuals. Given the poor reproductive potential of the remaining abalone in northern California, coupled with ongoing mortality and low kelp abundances, we discuss the need to maintain the fishing moratorium and implement active abalone restoration measures. For fished species, such as abalone, this additional hurdle to recovery imposed by changes in climate is critical to understand and incorporate into resource management and restoration.« less
  2. BACKGROUND Evaluating effects of global warming from rising atmospheric carbon dioxide (CO 2 ) concentrations requires resolving the processes that drive Earth’s carbon stocks and flows. Although biogeomorphic wetlands (peatlands, mangroves, salt marshes, and seagrass meadows) cover only 1% of Earth’s surface, they store 20% of the global organic ecosystem carbon. This disproportionate share is fueled by high carbon sequestration rates per unit area and effective storage capacity, which greatly exceed those of oceanic and forest ecosystems. We highlight that feedbacks between geomorphology and landscape-building wetland vegetation underlie these critical qualities and that disruption of these biogeomorphic feedbacks can switch these systems from carbon sinks into sources. ADVANCES A key advancement in understanding wetland functioning has been the recognition of the role of reciprocal organism-landform interactions, “biogeomorphic feedbacks.” Biogeomorphic feedbacks entail self-reinforcing interactions between biota and geomorphology, by which organisms—often vegetation—engineer landforms to their own benefit following a positive density-dependent relationship. Vegetation that dominates major carbon-storing wetlands generate self-facilitating feedbacks that shape the landscape and amplify carbon sequestration and storage. As a result, per unit area, wetland carbon stocks and sequestration rates greatly exceed those of terrestrial forests and oceans, ecosystems that worldwide harbor large stocks because of their largemore »areal extent. Worldwide biogeomorphic wetlands experience human-induced average annual loss rates of around 1%. We estimate that associated carbon losses amount to 0.5 Pg C per year, levels that are equivalent to 5% of the estimated overall anthropogenic carbon emissions. Because carbon emissions from degraded wetlands are often sustained for centuries until all organic matter has been decomposed, conserving and restoring biogeomorphic wetlands must be part of global climate solutions. OUTLOOK Our work highlights that biogeomorphic wetlands serve as the world’s biotic carbon hotspots, and that conservation and restoration of these hotspots offer an attractive contribution to mitigate global warming. Recent scientific findings show that restoration methods aimed at reestablishing biogeomorphic feedbacks can greatly increase establishment success and restoration yields, paving the way for large-scale restoration actions. Therefore, we argue that implementing such measures can facilitate humanity in its pursuit of targets set by the Paris Agreement and the United Nations Decade on Ecosystem Restoration. Carbon storage in biogeomorphic wetlands. Organic carbon ( A ) stocks, ( B ) densities, and ( C ) sequestration rates in the world’s major carbon-storing ecosystems. Oceans hold the largest stock, peatlands (boreal, temperate, and tropical aggregated) store the largest amount per unit area, and coastal ecosystems (mangroves, salt marshes, and seagrasses aggregated) support the highest sequestration rates. ( D and E ) Biogeomorphic feedbacks, indicated with arrows, can be classified as productivity stimulating or decomposition limiting. Productivity-stimulating feedbacks increase resource availability and thus stimulate vegetation growth and organic matter production. Although production is lower in wetlands with decomposition-limiting feedbacks, decomposition is more strongly limited, resulting in net accumulation of organic matter. (D) In fens, organic matter accumulation from vascular plants is amplified by productivity-stimulating feedbacks. Once the peat rises above the groundwater and is large enough to remain waterlogged by retaining rainwater, the resulting bog maintains being waterlogged and acidic, resulting in strong decomposition-limiting feedbacks. (E) Vegetated coastal ecosystems generate productivity-stimulating feedbacks that enhance local production and trapping of external organic matter.« less
  3. Disturbances often disproportionately impact different vegetation layers in forests and other vertically stratified ecosystems, shaping community structure and ecosystem function. However, disturbance-driven changes may be mediated by environmental conditions that affect habitat quality and species interactions. In a decade-long field experiment, we tested how kelp forest net primary productivity (NPP) responds to repeated canopy loss along a gradient in grazing and substrate suitability. We discovered that habitat quality can mediate the effects of intensified disturbance on canopy and understory NPP. Experimental annual and quarterly disturbances suppressed total macroalgal NPP, but effects were strongest in high- quality habitats that supported dense kelp canopies that were removed by disturbance. Understory macroalgae partly compensated for canopy NPP losses and this effect magnified with increasing habitat quality. Disturbance-driven increases in understory NPP were still rising after 5-10 years of disturbance, demonstrating the value of long-term experimentation for understanding ecosystem responses to changing disturbance regimes.
  4. This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This “world avoided” scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expectedmore »to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the “browning” of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.« less
  5. Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend notmore »only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.

    « less