skip to main content


Title: “You Have Said Too Much”: Java-Like Verbosity Anti-Patterns in Python Codebases
As a popular language for teaching introductory programming, Java can profoundly influence beginner programmers with its coding style and idioms. Despite its many advantages, the paradigmatic coding style in Java is often described as verbose. As a result, when writing code in more concise languages, such programmers tend to emulate the familiar Java coding idioms, thus neglecting to take advantage of the more succinct counterparts in those languages. As a result of such verbosity, not only the overall code quality suffers, but the verbose non-idiomatic patterns also render code hard to understand and maintain. In this paper, we study the incidences of Java-like verbosity as they occur in Python codebases. We present a collection of Java-Like Verbosity Anti-patterns and our pilot study of their presence in representative open-source Python codebases. We discuss our findings as a call for action to computing educators, particularly those who work with introductory students. We need novel pedagogical interventions that encourage budding programmers to write concise idiomatic code in any language.  more » « less
Award ID(s):
1712131
NSF-PAR ID:
10295569
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of ACM SIGPLAN SPLASH Educational Symposium 2021 (SPLASH-E 2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Expertise in programming traditionally assumes a binary novice-expert divide. Learning resources typically target programmers who are learning programming for the first time, or expert programmers for that language. An underrepresented, yet important group of programmers are those that are experienced in one programming language, but desire to author code in a different language. For this scenario, we postulate that an effective form of feedback is presented as a transfer from concepts in the first language to the second. Current programming environments do not support this form of feedback. In this study, we apply the theory of learning transfer to teach a language that programmers are less familiar with-such as R-in terms of a programming language they already know-such as Python. We investigate learning transfer using a new tool called Transfer Tutor that presents explanations for R code in terms of the equivalent Python code. Our study found that participants leveraged learning transfer as a cognitive strategy, even when unprompted. Participants found Transfer Tutor to be useful across a number of affordances like stepping through and highlighting facts that may have been missed or misunderstood. However, participants were reluctant to accept facts without code execution or sometimes had difficulty reading explanations that are verbose or complex. These results provide guidance for future designs and research directions that can support learning transfer when learning new programming languages. 
    more » « less
  2. Abstract

    Source code is a form of human communication, albeit one where the information shared between the programmers reading and writing the code is constrained by the requirement that the code executes correctly. Programming languages are more syntactically constrained than natural languages, but they are also very expressive, allowing a great many different ways to express even very simple computations. Still, code written by developers is highly predictable, and many programming tools have taken advantage of this phenomenon, relying on language modelsurprisalas a guiding mechanism. While surprisal has been validated as a measure of cognitive load in natural language, its relation to human cognitive processes in code is still poorly understood. In this paper, we explore the relationship between surprisal and programmer preference at a small granularity—do programmers prefer more predictable expressions in code? Usingmeaning‐preserving transformations, we produce equivalent alternatives to developer‐written code expressions and run a corpus study on Java and Python projects. In general, language models rate the code expressions developerschooseto write as more predictable than these transformed alternatives. Then, we perform two human subject studies asking participants to choose between two equivalent snippets of Java code with different surprisal scores (one original and transformed). We find that programmersdoprefer more predictable variants, and that stronger language models like the transformer align more often and more consistently with these preferences.

     
    more » « less
  3. null (Ed.)
    As Scratch has become one of the most popular educational programming languages, understanding its common programming idioms can benefit both computing educators and learners. This understanding can fine-tune the curricular development to help learners master the fundamentals of writing idiomatic code in their programming pursuits. Unfortunately, the research community’s understanding of what constitutes idiomatic Scratch code has been limited. To help bridge this knowledge gap, we systematically identified idioms as based on canonical source code, presented in widely available educational materials. We implemented a tool that automatically detects these idioms to assess their prevalence within a large dataset of over 70K Scratch projects in different experience backgrounds and project categories. Since communal learning and the practice of remixing are one of the cornerstones of the Scratch programming community, we studied the relationship between common programming idioms and remixes. Having analyzed the original projects and their remixes, we observed that different idioms may associate with dissimilar types of code changes. Code changes in remixes are desirable, as they require a meaningful programming effort that spurs the learning process. The ability to substantially change a project in its remixes hinges on the project’s code being easy to understand and modify. Our findings suggest that the presence of certain common idioms can indeed positively impact the degree of code changes in remixes. Our findings can help form a foundation of what comprises common Scratch programming idioms, thus benefiting both introductory computing education and Scratch programming tools. 
    more » « less
  4. null (Ed.)
    Polyglot programming, the use of multiple programming languages during the development process, is common practice in modern software development. This study investigates this practice through a randomized controlled trial conducted under the context of database programming. Participants in the study were given coding tasks written in Java and one of three SQL-like embedded languages. One was plain SQL in strings, one was in Java only, and the third was a hybrid embedded language that was closer to the host language. We recorded 109 valid data points. Results showed significant differences in how developers of different experience levels code using polyglot techniques. Notably, less experienced programmers wrote correct programs faster in the hybrid condition (frequent, but less severe, switches), while more experienced developers that already knew both languages performed better in traditional SQL (less frequent, but more complete, switches). The results indicate that the productivity impact of polyglot programming is complex and experience level dependent. 
    more » « less
  5. Human language is ambiguous, with intended meanings recovered via pragmatic reasoning in context. Such reliance on context is essential for the efficiency of human communication. Programming languages, in stark contrast, are defined by unambiguous grammars. In this work, we aim to make programming languages more concise by allowing programmers to utilize a controlled level of ambiguity. Specifically, we allow single-character abbreviations for common keywords and identifiers. Our system first proposes a set of strings that can be abbreviated by the user. Using only 100 abbreviations, we observe that a large dataset of Python code can be compressed by 15%, a number that can be improved even further by specializing the abbreviations to a particular code base. We then use a contextualized sequence-to-sequence model to rank potential expansions of inputs that include abbreviations. In an offline reconstruction task our model achieves accuracies ranging from 93% to 99%, depending on the programming language and user settings. The model is small enough to run on a commodity CPU in real-time. We evaluate the usability of our system in a user study, integrating it in Microsoft VSCode, a popular code text editor. We observe that our system performs well and is complementary to traditional autocomplete features. 
    more » « less