This paper reconsiders the On-Demand Multimodal Transit Systems (ODMTS) Design with Adoptions problem (ODMTS-DA) to capture the latent demand in on-demand multimodal transit systems. The ODMTS-DA is a bilevel optimization problem, for which Basciftci and Van Hentenryck proposed an exact combinatorial Benders decomposition. Unfortunately, their proposed algorithm only finds high-quality solutions for medium-sized cities and is not practical for large metropolitan areas. The main contribution of this paper is to propose a new path-based optimization model, called P-Path, to address these computational difficulties. The key idea underlying P-Path is to enumerate two specific sets of paths which capture the essence of the choice model associated with the adoption behavior of riders. With the help of these path sets, the ODMTS-DA can be formulated as a single-level mixed-integer programming model. In addition, the paper presents preprocessing techniques that can reduce the size of the model significantly. P-Path is evaluated on two comprehensive case studies: the midsize transit system of the Ann Arbor – Ypsilanti region in Michigan (which was studied by Basciftci and Van Hentenryck) and the large-scale transit system for the city of Atlanta. The experimental results show that P-Path solves the Michigan ODMTS-DA instances in a few minutes, bringing more than two orders of magnitude improvements compared with the existing approach. For Atlanta, the results show that P-Path can solve large-scale ODMTS-DA instances (about 17 millions variables and 37 millions constraints) optimally in a few hours or in a few days. These results show the tremendous computational benefits of P-Path which provides a scalable approach to the design of on-demand multimodal transit systems with latent demand. History: Accepted by Andrea Lodi, Design & Analysis of Algorithms—Discrete. Funding: This work was partially supported by National Science Foundation Leap-HI [Grant 1854684] and the Tier 1 University Transportation Center (UTC): Transit - Serving Communities Optimally, Responsively, and Efficiently (T-SCORE) from the U.S. Department of Transportation [69A3552047141]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0014 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0014 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
more »
« less
Multimodal mobility systems: joint optimization of transit network design and pricing
The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services.
more »
« less
- Award ID(s):
- 1952011
- PAR ID:
- 10295622
- Date Published:
- Journal Name:
- ICCPS '21: Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems
- Page Range / eLocation ID:
- 121 to 131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hebrard E., Musliu N. (Ed.)This study explores the design of an On-Demand Multimodal Transit System (ODMTS) that includes segmented mode switching models that decide whether potential riders adopt the new ODMTS or stay with their personal vehicles. It is motivated by the desire of transit agencies to design their network by taking into account both existing and latent demand, as quality of service improves. The paper presents a bilevel optimization where the leader problem designs the network and each rider has a follower problem to decide her best route through the ODMTS. The bilevel model is solved by a decomposition algorithm that combines traditional Benders cuts with combinatorial cuts to ensure the consistency of mode choices by the leader and follower problems. The approach is evaluated on a case study using historical data from Ann Arbor, Michigan, and a user choice model based on the income levels of the potential transit riders.more » « less
-
null (Ed.)With Mobility-as-a-Service platforms moving toward vertical service expansion, we propose a destination recommender system for Mobility-on-Demand (MOD) services that explicitly considers dynamic vehicle routing constraints as a form of a ``physical internet search engine''. It incorporates a routing algorithm to build vehicle routes and an upper confidence bound based algorithm for a generalized linear contextual bandit algorithm to identify alternatives which are acceptable to passengers. As a contextual bandit algorithm, the added context from the routing subproblem makes it unclear how effective learning is under such circumstances. We propose a new simulation experimental framework to evaluate the impact of adding the routing constraints to the destination recommender algorithm. The proposed algorithm is first tested on a 7 by 7 grid network and performs better than benchmarks that include random alternatives, selecting the highest rating, or selecting the destination with the smallest vehicle routing cost increase. The RecoMOD algorithm also reduces average increases in vehicle travel costs compared to using random or highest rating recommendation. Its application to Manhattan dataset with ratings for 1,012 destinations reveals that a higher customer arrival rate and faster vehicle speeds lead to better acceptance rates. While these two results sound contradictory, they provide important managerial insights for MOD operators.more » « less
-
We study the problem of jointly pricing and designing a smart transit system, where a transit agency (the platform) controls a fleet of demand-responsive vehicles (cars) and a fixed line service (buses). The platform offers commuters a menu of options (modes) to travel between origin and destination (e.g., direct car trip, a bus ride, or a combination of the two), and commuters make a utility-maximizing choice within this menu, given the price of each mode. The goal of the platform is to determine an optimal set of modes to display to commuters, prices for these modes, and the design of the transit network in order to maximize the social welfare of the system. In this work, we tackle the commuter choice aspect of this problem, traditionally approached via computationally intensive bilevel programming techniques. In particular, we develop a framework that efficiently decouples the pricing and network design problem: Given an efficient (approximation) algorithm for centralized network design without prices, there exists an efficient (approximation) algorithm for decentralized network design with prices and commuter choice. We demonstrate the practicality of our framework via extensive numerical experiments on a real-world data set. We moreover explore the dependence of metrics such as welfare, revenue, and mode usage on (i) transfer costs and (ii) cost of contracting with on-demand service providers and exhibit the welfare gains of a fully integrated mobility system. Funding: This work was supported by the National Science Foundation [Awards CMMI-2308750, CNS-1952011, and CMMI-2144127]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0452 .more » « less
-
Shared mobility-on-demand services are expanding rapidly in cities around the world. As a prominent example, app-based ridesourcing is becoming an integral part of many urban transportation ecosystems. Despite the centrality, limited public availability of detailed temporal and spatial data on ridesourcing trips has limited research on how new services interact with traditional mobility options and how they affect travel in cities. Improving data-sharing agreements are opening unprecedented opportunities for research in this area. This study examined emerging patterns of mobility using recently released City of Chicago public ridesourcing data. The detailed spatio-temporal ridesourcing data were matched with weather, transit, and taxi data to gain a deeper understanding of ridesourcing’s role in Chicago’s mobility system. The goal was to investigate the systematic variations in patronage of ridehailing. K-prototypes was utilized to detect user segments owing to its ability to accept mixed variable data types. An extension of the K-means algorithm, its output was a classification of the data into several clusters called prototypes. Six ridesourcing prototypes were identified and discussed based on significant differences in relation to adverse weather conditions, competition with alternative modes, location and timing of use, and tendency for ridesplitting. The paper discusses the implications of the identified clusters related to affordability, equity, and competition with transit.more » « less
An official website of the United States government

