skip to main content

Title: Multimodal mobility systems: joint optimization of transit network design and pricing
The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional more » mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services. « less
Authors:
; ;
Award ID(s):
1952011
Publication Date:
NSF-PAR ID:
10295622
Journal Name:
ICCPS '21: Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems
Page Range or eLocation-ID:
121 to 131
Sponsoring Org:
National Science Foundation
More Like this
  1. With Mobility-as-a-Service platforms moving toward vertical service expansion, we propose a destination recommender system for Mobility-on-Demand (MOD) services that explicitly considers dynamic vehicle routing constraints as a form of a ``physical internet search engine''. It incorporates a routing algorithm to build vehicle routes and an upper confidence bound based algorithm for a generalized linear contextual bandit algorithm to identify alternatives which are acceptable to passengers. As a contextual bandit algorithm, the added context from the routing subproblem makes it unclear how effective learning is under such circumstances. We propose a new simulation experimental framework to evaluate the impact of adding the routing constraints to the destination recommender algorithm. The proposed algorithm is first tested on a 7 by 7 grid network and performs better than benchmarks that include random alternatives, selecting the highest rating, or selecting the destination with the smallest vehicle routing cost increase. The RecoMOD algorithm also reduces average increases in vehicle travel costs compared to using random or highest rating recommendation. Its application to Manhattan dataset with ratings for 1,012 destinations reveals that a higher customer arrival rate and faster vehicle speeds lead to better acceptance rates. While these two results sound contradictory, they provide important managerialmore »insights for MOD operators.« less
  2. Hebrard E., Musliu N. (Ed.)
    This study explores the design of an On-Demand Multimodal Transit System (ODMTS) that includes segmented mode switching models that decide whether potential riders adopt the new ODMTS or stay with their personal vehicles. It is motivated by the desire of transit agencies to design their network by taking into account both existing and latent demand, as quality of service improves. The paper presents a bilevel optimization where the leader problem designs the network and each rider has a follower problem to decide her best route through the ODMTS. The bilevel model is solved by a decomposition algorithm that combines traditional Benders cuts with combinatorial cuts to ensure the consistency of mode choices by the leader and follower problems. The approach is evaluated on a case study using historical data from Ann Arbor, Michigan, and a user choice model based on the income levels of the potential transit riders.
  3. During recent years there have been several efforts from city and transportation planners, as well as, port authorities, to design multimodal transport systems, covering the needs of the population to be served. However, before designing such a system, the first step is to understand the current gaps. Does the current system meet the transit demand of the geographic area covered? If not, where are the gaps between supply and demand? To answer this question, the notion of transit desert has been introduced. A transit desert is an area where the supply of transit service does not meet the demand for it. While there is little ambiguity on what constitutes transit demand, things are more vague when it comes to transit supply. Existing efforts often define transit supply using volume metrics (e.g., number of bus stops within a pre-defined distance). However, this does not necessarily capture the quality of the transit service. In this study, we introduce a network-based transit desert index (which we call TDI) that captures not only the quantity of transit supply in an area, but also the connectivity that the transit system provides for an area within the region of interest. In particular, we define a networkmore »between areas based on the transit travel time, distance, and overall quantity of connections. We use these measures to examine two notions of transit quality: connectivity and availability. To quantify the connectivity of an area i we utilize the change observed in the second smallest eigenvalue of the Laplacian when we remove node i from the network. To quantify availability of an area i, we examine the number of routes which pass through this area as given by an underlying transit network. We further apply and showcase our approach with data from Allegheny County, Pennsylvania, USA. Finally, we discuss current limitations of TDI and how we can tackle them as part of our future research.« less
  4. The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future.
  5. With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-inthe-loop air traffic management, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP). This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is ≈6000× faster than the MILP approach and can resolve 100% of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots.