Branched polymers stress relaxation is at the center to their function as viscosity modifiers, though the fundamentals that underlie the correlation between the polymer topology and their impact on viscosity remains an open question. Here, the stress relaxation of short, branched polyethylene comb polymer melts is studied by molecular dynamics simulations. A coarse-grained model where four methylene groups constitute one bead is used, and the results are transposed to the atomistic level. For arms of length comparable to entanglement length ne of the linear polymer, we show that while increasing the number of branches with the same arm length decreases the plateau modulus, the terminal diffusive time does not change significantly. Increasing the arm length decreases the plateau modulus and increases the terminal time. As arms shorter than ne relax by the entanglement time, both the chain mobility and stress relaxation can be described by reptation of the backbone with an increased tube diameter and an increas
more »
« less
Solution size variation of linear and dendritic bis-MPA analogs using DOSY- 1 H NMR
Dendrimers are globular, multi-functional, monodisperse macromolecules with perfect structure fidelity. Their architecture is composed of a series of branched polymeric arms, composed within “wedges”, that emanate from a central core. Their structure contains a high density of functional groups located at their periphery, referred to as the “outer shell”. Due to their globular structure, it is assumed that the relative “size” of a dendrimer does not fluctuate greatly between solvents. This may be due to the inability of the branched arms, or wedges, to significantly expand or collapse (comparative to analogous linear polymers) owing to steric barriers from branching, especially at higher generations. In contrast, it is expected that a linear polymer, of similar molecular weight to a dendrimer analog, would have a greater degree of size variation dependent on solvent-polymer interactions. This stems from its innate flexibility and greater conformational flexibility. For this investigation, analogous dendritic and linear bis-MPA polyesters as well as poly(caprolactone) (PCL) were analyzed using size-measuring techniques including gel permeation chromatography (GPC) and diffusion ordered spectroscopy-nuclear magnetic resonance (DOSY- 1 H NMR).
more »
« less
- Award ID(s):
- 1807358
- PAR ID:
- 10295653
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 1507 to 1517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tandem mass spectrometry (MS2) has been employed to elucidate the topology and branching architecture of star-branched polyethers. The polymers were ionized by matrix-assisted laser desorption/ionization (MALDI) to positive ions and dissociated after leaving the ion source via laser-induced fragmentation. The bond scissions caused under MALDI-MS2 conditions occur preferentially near the core-branch joining points due to energetically favorable homolytic and heterolytic bond cleavages near the core and release of steric strain and/or reduction of crowding. This unique fragmentation mode detaches complete arms from the core generating fragment ion series at the expected molecular weight of each branch. The number of fragment ion distributions observed combined with their mass-to-charge ratios permit conclusive determination of the degree of branching and the corresponding branch lengths, as demonstrated for differently branched homo- and mikto-arm polyether stars synthesized via azide-alkyne click chemistry. The results of this study underscore the utility of MS2 for the characterization of branching architecture and branch lengths of (co)polymers with two or more linear chains attached to a functionalized central core.more » « less
-
null (Ed.)Poly[ n ]catenanes are a class of polymers that are composed entirely of interlocked rings. One synthetic route to these polymers involves the formation of a metallosupramolecular polymer (MSP) that consists of alternating units of macrocyclic and linear thread components. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[ n ]catenanes. Reported herein are investigations into this synthetic methodology, with a focus on a more detailed understanding of the crude product distribution and how the concentration of the MSP during the ring closing reaction impacts the resulting poly[ n ]catenanes. In addition to a better understanding of the molecular products obtained in these reactions, the results show that the concentration of the reaction can be used to tune the size and type of poly[ n ]catenanes accessed. At low concentrations the interlocked product distribution is limited to primarily oligomeric and small cyclic catenanes . However, the same reaction at increased concentration can yield branched poly[ n ]catenanes with an ca. 21 kg mol −1 , with evidence of structures containing as many as 640 interlocked rings (1000 kg mol −1 ).more » « less
-
The main-chain poly[ n ]catenane consists of a series of interlocked rings that resemble a macroscopic chain-link structure. Recently, the synthesis of such intriguing polymers was reported via a metallosupramolecular polymer (MSP) template that consists of alternating units of macrocyclic and linear thread-like monomers. Ring closure of the thread components has been shown to yield a mixture of cyclic, linear, and branched poly[ n ]catenanes. Reported herein are studies aimed at accessing new poly[ n ]catenanes via this approach and exploring the effect the thread-like monomer structure has on the poly[ n ]catenane synthesis. Specifically, the effect of the size of the aromatic linker and alkenyl chains of the thread-like monomer is investigated. Three new poly[ n ]catenanes (with different ring sizes) were prepared using the MSP approach and the results show that tailoring the structure of the thread-like monomer can allow the selective synthesis of branched poly[ n ]catenanes.more » « less
-
Cellular remodeling of actin networks underlies cell motility during key morphological events, from embryogenesis to metastasis. In these transformations, there is an inherent competition between actin branching and bundling, because steric clashes among branches create a mechanical barrier to bundling. Recently, liquid-like condensates consisting purely of proteins involved in either branching or bundling of the cytoskeleton have been found to catalyze their respective functions. Yet in the cell, proteins that drive branching and bundling are present simultaneously. In this complex environment, which factors determine whether a condensate drives filaments to branch or become bundled? To answer this question, we added the branched actin nucleator, Arp2/3, to condensates composed of VASP, an actin bundling protein. At low actin to VASP ratios, branching activity, mediated by Arp2/3, robustly inhibited VASP-mediated bundling of filaments, in agreement with agent-based simulations. In contrast, as the actin to VASP ratio increased, addition of Arp2/3 led to formation of aster-shaped structures, in which bundled filaments emerged from a branched actin core, analogous to filopodia emerging from a branched lamellipodial network. These results demonstrate that multi-component, liquid-like condensates can modulate the inherent competition between bundled and branched actin morphologies, leading to organized, higher-order structures, similar to those found in motile cells.more » « less
An official website of the United States government

