skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchmark Bird Surveys Help Quantify Counting Accuracy in a Citizen-Science Database
The growth of biodiversity data sets generated by citizen scientists continues to accelerate. The availability of such data has greatly expanded the scale of questions researchers can address. Yet, error, bias, and noise continue to be serious concerns for analysts, particularly when data being contributed to these giant online data sets are difficult to verify. Counts of birds contributed to eBird, the world’s largest biodiversity online database, present a potentially useful resource for tracking trends over time and space in species’ abundances. We quantified counting accuracy in a sample of 1,406 eBird checklists by comparing numbers contributed by birders (N = 246) who visited a popular birding location in Oregon, USA, with numbers generated by a professional ornithologist engaged in a long-term study creating benchmark (reference) measurements of daily bird counts. We focused on waterbirds, which are easily visible at this site. We evaluated potential predictors of count differences, including characteristics of contributed checklists, of each species, and of time of day and year. Count differences were biased toward undercounts, with more than 75% of counts being below the daily benchmark value. Median count discrepancies were −29.1% (range: 0 to −42.8%; N = 20 species). Model sets revealed an important influence of each species’ reference count, which varied seasonally as waterbird numbers fluctuated, and of percent of species known to be present each day that were included on each checklist. That is, checklists indicating a more thorough survey of the species richness at the site also had, on average, smaller count differences. However, even on checklists with the most thorough species lists, counts were biased low and exceptionally variable in their accuracy. To improve utility of such bird count data, we suggest three strategies to pursue in the future. (1) Assess additional options for analytically determining how to select checklists that include less biased count data, as well as exploring options for correcting bias during the analysis stage. (2) Add options for users to provide additional information that helps analysts choose checklists, such as an option for users to tag checklists where they focused on obtaining accurate counts. (3) Explore opportunities to effectively calibrate citizen-science bird count data by establishing a formalized network of marquis sites where dedicated observers regularly contribute carefully collected benchmark data.  more » « less
Award ID(s):
1910118
PAR ID:
10295697
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in ecology and evolution
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Bird species’ migratory patterns have typically been studied through individual observations and historical records. In recent years, the eBird citizen science project, which solicits observations from thousands of bird watchers around the world, has opened the door for a data-driven approach to understanding the large-scale geographical movements. Here, we focus on the North American tree swallow (Tachycineta bicolor) occurrence patterns throughout the eastern USA. Migratory departure dates for this species are widely believed by both ornithologists and casual observers to vary substantially across years, but the reasons for this are largely unknown. In this work, we present evidence that maximum daily temperature is predictive of tree swallow occurrence. Because it is generally understood that species occurrence is a function of many complex, high order interactions between ecological covariates, we utilize the flexible modelling approach that is offered by random forests. Making use of recent asymptotic results, we provide formal hypothesis tests for predictive significance of various covariates and also develop and implement a permutation-based approach for formally assessing interannual variations by treating the prediction surfaces that are generated by random forests as functional data. Each of these tests suggest that maximum daily temperature is important in predicting migration patterns. 
    more » « less
  2. Abstract Effective solutions to conserve biodiversity require accurate community‐ and species‐level information at relevant, actionable scales and across entire species' distributions. However, data and methodological constraints have limited our ability to provide such information in robust ways. Herein we employ a Deep‐Reasoning Network implementation of the Deep Multivariate Probit Model (DMVP‐DRNets), an end‐to‐end deep neural network framework, to exploit large observational and environmental data sets together and estimate landscape‐scale species diversity and composition at continental extents. We present results from a novel year‐round analysis of North American avifauna using data from over nine million eBird checklists and 72 environmental covariates. We highlight the utility of our information by identifying critical areas of high species diversity for a single group of conservation concern, the North American wood warblers, while capturing spatiotemporal variation in species' environmental associations and interspecific interactions. In so doing, we demonstrate the type of accurate, high‐resolution information on biodiversity that deep learning approaches such as DMVP‐DRNets can provide and that is needed to inform ecological research and conservation decision‐making at multiple scales. 
    more » « less
  3. The conversion of forest to agriculture is considered one of the greatest threats to avian biodiversity, yet how species respond to habitat modification throughout the annual cycle remains unknown. We examined whether forest bird associations with agricultural habitats vary throughout the year, and if species traits influence these relationships. Using data from the eBird community‐science program, we investigated associations between agriculturally‐modified land cover and the occurrence of 238 forest bird species based on three sets of avian traits: migratory strategy, dietary guild, and foraging strategy. We found that the influence of agriculturally‐modified land cover on species distributions varied widely across periods and trait groups but highlighting several broad findings. First, migratory species showed strong seasonal differences in their response to agricultural land cover while resident species did not. Second, there was a migratory strategy by season interaction; Neotropical migrants were most negatively influenced by agricultural land cover during the breeding period while short‐distance migrants were most negatively influenced during the non‐breeding period. Third, regardless of season, some dietary (e.g. insectivores) and foraging guilds (e.g. bark foragers) consistently responded more negatively to agricultural land cover than others (e.g. omnivores and ground foragers, respectively). Fourth, there were greater differences among dietary guilds in their responses to agricultural land cover during the breeding period than during the non‐breeding period, perhaps reflecting how different habitat and ecological requirements enhance the susceptibility of some guilds during reproduction. These results suggest that management efforts across the annual cycle may be oversimplified and thus ineffective when based on broad ecological generalisations that are static in space and time. 
    more » « less
  4. Abstract Aircraft collisions with birds span the entire history of human aviation, including fatal collisions during some of the first powered human flights. Much effort has been expended to reduce such collisions, but increased knowledge about bird movements and species occurrence could dramatically improve decision support and proactive measures to reduce them. Migratory movements of birds pose a unique, often overlooked, threat to aviation that is particularly difficult for individual airports to monitor and predict the occurrence of birds vary extensively in space and time at the local scales of airport responses.We use two publicly available datasets, radar data from the US NEXRAD network characterizing migration movements and eBird data collected by citizen scientists to map bird movements and species composition with low human effort expenditures but high temporal and spatial resolution relative to other large‐scale bird survey methods. As a test case, we compare results from weather radar distributions and eBird species composition with detailed bird strike records from three major New York airports.We show that weather radar‐based estimates of migration intensity can accurately predict the probability of bird strikes, with 80% of the variation in bird strikes across the year explained by the average amount of migratory movements captured on weather radar. We also show that eBird‐based estimates of species occurrence can, using species’ body mass and flocking propensity, accurately predict when most damaging strikes occur.Synthesis and applications. By better understanding when and where different bird species occur, airports across the world can predict seasonal periods of collision risks with greater temporal and spatial resolution; such predictions include potential to predict when the most severe and damaging strikes may occur. Our results highlight the power of federating datasets with bird movement and distribution data for developing better and more taxonomically and ecologically tuned models of likelihood of strikes occurring and severity of strikes. 
    more » « less
  5. Citizen science biodiversity data present great opportunities for ecology and conservation across vast spatial and temporal scales. However, the opportunistic nature of these data lacks the sampling structure required by modeling methodologies that address a pervasive challenge in ecological data collection: imperfect detection, i.e., the likelihood of under-observing species on field surveys. Occupancy modeling is an example of an approach that accounts for imperfect detection by explicitly modeling the observation process separately from the biological process of habitat selection. This produces species distribution models that speak to the pattern of the species on a landscape after accounting for imperfect detection in the data, rather than the pattern of species observations corrupted by errors. To achieve this benefit, occupancy models require multiple surveys of a site across which the site's status (i.e., occupied or not) is assumed constant. Since citizen science data are not collected under the required repeated-visit protocol, observations may be grouped into sites post hoc. Existing approaches for constructing sites discard some observations and/or consider only geographic distance and not environmental similarity. In this study, we compare ten approaches for site construction in terms of their impact on downstream species distribution models for 31 bird species in Oregon, using observations recorded in the eBird database. We find that occupancy models built on sites constructed by spatial clustering algorithms perform better than existing alternatives. 
    more » « less