SUMMARY Arabidopsis thalianaABSCISIC ACID INSENSITIVE3 (ABI3) is a transcription factor in the B3 domain family. ABI3, along with B3 domain transcription factors LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3), and LEC1, a subunit of the CCAAT box‐binding complex, form the so‐called LAFL network to control various aspects of seed development and maturation. ABI3 also contributes to the abscisic acid (ABA) response. We report on chromatin immunoprecipitation‐tiling array experiments to map binding sites for ABI3 globally. We also assessed transcriptomes in response to ABI3 by comparing developingabi3‐5and wild‐type seeds and combined this information to ascertain direct and indirect responsive ABI3 target genes. ABI3 can induce and repress its transcription of target genes directly and some intriguing differences exist incismotifs between these groups of genes. Directly regulated targets reflect the role of ABI3 in seed maturation, desiccation tolerance, entry into a quiescent state and longevity. Interestingly, ABI3 directly represses a gene encoding a microRNA (MIR160B) that targetsAUXIN RESPONSE FACTOR(ARF)10andARF16that are involved in establishment of dormancy. In addition, ABI3, like FUS3, regulates genes encodingMIR156but while FUS3 only induces genes encoding this product, ABI3 induces these genes during the early stages of seed development, but represses these genes during late development. The interplay between ABI3, the otherLAFLgenes, and theVP1/ABI3‐LIKE(VAL) genes, which are involved in the transition to seedling development are examined and reveal complex interactions controlling development.
more »
« less
Structural variation affecting DNA backbone interactions underlies adaptation of B3 DNA binding domains to constraints imposed by protein architecture
Abstract Functional and architectural diversification of transcription factor families has played a central role in the independent evolution of complex development in plants and animals. Here, we investigate the role of architectural constraints on evolution of B3 DNA binding domains that regulate plant embryogenesis. B3 domains of ABI3, FUS3, LEC2 and VAL1 proteins recognize the same cis-element. Complex architectures of ABI3 and VAL1 integrate cis-element recognition with other signals, whereas LEC2 and FUS3 have reduced architectures conducive to roles as pioneer activators. In yeast and plant in vivo assays, B3 domain functions correlate with architectural complexity of the parent transcription factor rather than phylogenetic relatedness. In a complex architecture, attenuated ABI3-B3 and VAL1-B3 activities enable integration of cis-element recognition with hormone signaling, whereas hyper-active LEC2-B3 and FUS3-B3 over-ride hormonal control. Three clade-specific amino acid substitutions (β4-triad) implicated in interactions with the DNA backbone account for divergence of LEC2-B3 and ABI3-B3. We find a striking correlation between differences in in vitro DNA binding affinity and in vivo activities of B3 domains in plants and yeast. Our results highlight the role of DNA backbone interactions that preserve DNA sequence specificity in adaptation of B3 domains to functional constraints associated with domain architecture.
more »
« less
- Award ID(s):
- 1748105
- PAR ID:
- 10295742
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 49
- Issue:
- 9
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- 4989 to 5002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo-versusheterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers inArabidopsisand show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.more » « less
-
null (Ed.)Electrostatic protein/DNA interactions arise from the neutralization of the DNA phosphodiester backbone as well as coupled exchanges by charged protein residues as salt bridges or with mobile ions. Much focus has been and continues to be paid to interfacial ion pairs with DNA. The role of extra-interfacial ionic interactions, particularly as dynamic drivers of DNA sequence selectivity, remain poorly known. The ETS family of transcription factors represents an attractive model for addressing this knowledge gap given their diverse ionic composition in primary structures that fold to a tightly conserved DNA-binding motif. To probe the importance of extra-interfacial salt bridges in DNA recognition, we compared the salt-dependent binding by Elk1 with ETV6, two ETS homologs differing markedly in ionic composition. While both proteins exhibit salt-dependent binding with cognate DNA that corresponds to interfacial phosphate contacts, their nonspecific binding diverges from cognate binding as well as each other. Molecular dynamics simulations in explicit solvent, which generated ionic interactions in agreement with the experimental binding data, revealed distinct salt-bridge dynamics in the nonspecific complexes formed by the two proteins. Impaired DNA contact by ETV6 resulted in fewer backbone contacts in the nonspecific complex, while Elk1 exhibited a redistribution of extra-interfacial salt bridges via residues that are non-conserved between the two ETS relatives. Thus, primary structure variation in ionic residues can encode highly differentiated specificity mechanisms in a highly conserved DNA-binding motif.more » « less
-
The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.more » « less
-
Short tandem repeats (STRs) are enriched in eukaryoticcis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)–DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.more » « less
An official website of the United States government

