skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins
The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.  more » « less
Award ID(s):
1818286 1243372
NSF-PAR ID:
10335765
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Genes & Development
Volume:
36
Issue:
3-4
ISSN:
0890-9369
Page Range / eLocation ID:
225 to 240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)—known to form coiled-coil dimers—and a Forkhead (FKH) domain—known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization. We found that domain tethering promotes FoxP1 dimerization but inhibits a FKH domain-swapped structure. Furthermore, our findings indicate that the linker mediates the mutual organization and dynamics of ZIP and FKH domains, forming closed and open states with and without interdomain contacts, thus highlighting the role of the linkers in multidomain proteins. Finally, we found that DNA allosterically promotes structural changes that decrease the dimerization propensity of FoxP1. We postulate that, upon DNA binding, the interdomain linker plays a crucial role in the gene regulatory function of FoxP1. 
    more » « less
  2. null (Ed.)
    Abstract Functional and architectural diversification of transcription factor families has played a central role in the independent evolution of complex development in plants and animals. Here, we investigate the role of architectural constraints on evolution of B3 DNA binding domains that regulate plant embryogenesis. B3 domains of ABI3, FUS3, LEC2 and VAL1 proteins recognize the same cis-element. Complex architectures of ABI3 and VAL1 integrate cis-element recognition with other signals, whereas LEC2 and FUS3 have reduced architectures conducive to roles as pioneer activators. In yeast and plant in vivo assays, B3 domain functions correlate with architectural complexity of the parent transcription factor rather than phylogenetic relatedness. In a complex architecture, attenuated ABI3-B3 and VAL1-B3 activities enable integration of cis-element recognition with hormone signaling, whereas hyper-active LEC2-B3 and FUS3-B3 over-ride hormonal control. Three clade-specific amino acid substitutions (β4-triad) implicated in interactions with the DNA backbone account for divergence of LEC2-B3 and ABI3-B3. We find a striking correlation between differences in in vitro DNA binding affinity and in vivo activities of B3 domains in plants and yeast. Our results highlight the role of DNA backbone interactions that preserve DNA sequence specificity in adaptation of B3 domains to functional constraints associated with domain architecture. 
    more » « less
  3. Abstract

    Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein–DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein–DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein–DNA interactions).

     
    more » « less
  4. Abstract

    Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM‐binding domains in the human proteome, the PDZ domain. These domains bind the extreme C‐terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developedMotifAnalyzer‐PDZ, a program that filters and compares all motif‐satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C‐terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, theMonsiga brevicollisSHANK1 PDZ domain (mbSHANK1), with endogenously‐relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif‐satisfying sequences from over a dozen organisms. Overall,MotifAnalyzer‐PDZis a versatile program to investigate potential PDZ interactions. This proof‐of‐concept work is poised to enable similar types of analyses for other SLiM‐binding domains (e.g.,MotifAnalyzer‐Kinase).MotifAnalyzer‐PDZis available athttp://motifAnalyzerPDZ.cs.wwu.edu.

     
    more » « less
  5. Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram‐negative bacterial copper regulator. The structure ofE. coliCueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However,P. aeruginosaCueR, which shows high sequence similarity toE. coliCueR, has been less studied. Here, we applied room‐temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics ofP. aeruginosaCueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed thatP. aeruginosaCueR is less dynamic than theE. coliCueR protein and exhibits much higher sensitivity to DNA binding as compared to itsE. coliCueR homolog. Moreover, a difference in dynamical behavior was observed whenP. aeruginosaCueR binds to thecopZ2DNA promoter sequence compared to themexPQ‐opmEpromoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ‐OpmE proteins inP. aeruginosa. Overall, such comparative measurements of protein‐DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence‐recognition and mechanistic properties.

     
    more » « less