skip to main content


Title: APaS: An Adaptive Partition-Based Scheduling Framework for 6TiSCH Networks
The past decade has witnessed the rapid development of real-time wireless technologies and their wide adoption in various industrial Internet-of-Things (IIoT) applications. Among those wireless technologies, 6TiSCH is a promising candidate as the de facto standard due to its nice feature of gluing a real-time link-layer standard (802.15.4e, for offering deterministic communication performance) together with an IP-enabled upper-layer stack (for seamlessly supporting Internet services). 6TiSCH's built-in random slot selection scheduling algorithm, however, often leads to large and unbounded transmission latency, thus can hardly meet the real-time requirements of IIoT applications. This paper proposes an adaptive partition based scheduling framework, APaS, for 6TiSCH networks. APaS introduces the concept of resource partitioning into 6TiSCH network management. Instead of allocating network resources to individual devices, APaS partitions and assigns network resources to different groups of devices based on their layers in the network so as to guarantee that the transmission latency of any end-toend flow is within one slotframe length. APaS also employs a novel online partition adjustment method to further improve its adaptability to dynamic network topology changes. The effectiveness of APaS is validated through both simulation and testbed experiments on a 122-node multi-hop 6TiSCH network.  more » « less
Award ID(s):
2028875 2028879
NSF-PAR ID:
10295772
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
the 27th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)
Page Range / eLocation ID:
320 to 332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent Internet-of-Things (IoT) networks span across a multitude of stationary and robotic devices, namely unmanned ground vehicles, surface vessels, and aerial drones, to carry out mission-critical services such as search and rescue operations, wildfire monitoring, and flood/hurricane impact assessment. Achieving communication synchrony, reliability, and minimal communication jitter among these devices is a key challenge both at the simulation and system levels of implementation due to the underpinning differences between a physics-based robot operating system (ROS) simulator that is time-based and a network-based wireless simulator that is event-based, in addition to the complex dynamics of mobile and heterogeneous IoT devices deployed in a real environment. Nevertheless, synchronization between physics (robotics) and network simulators is one of the most difficult issues to address in simulating a heterogeneous multi-robot system before transitioning it into practice. The existing TCP/IP communication protocol-based synchronizing middleware mostly relied on Robot Operating System 1 (ROS1), which expends a significant portion of communication bandwidth and time due to its master-based architecture. To address these issues, we design a novel synchronizing middleware between robotics and traditional wireless network simulators, relying on the newly released real-time ROS2 architecture with a master-less packet discovery mechanism. Additionally, we propose a ground and aerial agents’ velocity-aware customized QoS policy for Data Distribution Service (DDS) to minimize the packet loss and transmission latency between a diverse set of robotic agents, and we offer the theoretical guarantee of our proposed QoS policy. We performed extensive network performance evaluations both at the simulation and system levels in terms of packet loss probability and average latency with line-of-sight (LOS) and non-line-of-sight (NLOS) and TCP/UDP communication protocols over our proposed ROS2-based synchronization middleware. Moreover, for a comparative study, we presented a detailed ablation study replacing NS-3 with a real-time wireless network simulator, EMANE, and masterless ROS2 with master-based ROS1. Our proposed middleware attests to the promise of building a largescale IoT infrastructure with a diverse set of stationary and robotic devices that achieve low-latency communications (12% and 11% reduction in simulation and reality, respectively) while satisfying the reliability (10% and 15% packet loss reduction in simulation and reality, respectively) and high-fidelity requirements of mission-critical applications. 
    more » « less
  2. Embedded and real-time devices in many domains are increasingly dependent on network connectivity. The ability to offload computations encourages Cost, Size, Weight and Power (C-SWaP) optimizations, while coordination over the network effectively enables systems to sense the environment beyond their own local sensors, and to collaborate globally. The promise is significant: Autonomous Vehicles (AVs) coordinating with each other through infrastructure, factories aggregating data for global optimization, and power-constrained devices leveraging offloaded inference tasks. Low-latency wireless (e.g., 5G) technologies paired with the edge cloud, are further enabling these trends. Unfortunately, computation at the edge poses significant challenges due to the challenging combination of limited resources, required high performance, security due to multi-tenancy, and real-time latency. This paper introduces Edge-RT, a set of OS extensions for the edge designed to meet the end-to-end (packet reception to transmission) deadlines across chains of computations. It supports strong security by executing a chain per-client device, thus isolating tenant and device computations. Despite a practical focus on deadlines and strong isolation, it maintains high system efficiency. To do so, Edge-RT focuses on per-packet deadlines inherited by the computations that operate on it. It introduces mechanisms to avoid per-packet system overheads, while trading only bounded impacts on predictable scheduling. Results show that compared to Linux and EdgeOS, Edge-RT can both maintain higher throughput and meet significantly more deadlines both for systems with bimodal workloads with utilization above 60%, in the presence of malicious tasks, and as the system scales up in clients. 
    more » « less
  3. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  4. null (Ed.)
    Industrial Internet of Things (IIoT) systems aim to interconnect a large number of heterogeneous industrial sensing and actuation devices through both wired and wireless communication technologies and further connect them to the Internet to achieve ubiquitous sensing, computing and control services [1]. As a representative IIoT technology, 6TiSCH [2] targets at gluing together the 802.15.4e data link layer (offering industrial performance in terms of timing, reliability and power consumption) and an IP-enabled upper layer stack to achieve both deterministic network performance and seamless integration with Internet services. In recent years, 6TiSCH has been receiving increasing attentions from both industry and academia. We have witnessed its wide deployment in many industrial domains, including advanced manufacturing, industrial process control, smart grids, and healthcare. 
    more » « less
  5. Short-packet transmission has attracted considerable attention due to its potential to achieve ultralow latency in automated driving, telesurgery, the Industrial Internet of Things (IIoT), and other applications emerging in the coming era of the Six-Generation (6G) wireless networks. In 6G systems, a paradigm-shifting infrastructure is anticipated to provide seamless coverage by integrating low-Earth orbit (LEO) satellite networks, which enable long-distance wireless relaying. However, how to efficiently transmit short packets over a sizeable spatial scale remains open. In this paper, we are interested in low-latency short-packet transmissions between two distant nodes, in which neither propagation delay, nor propagation loss can be ignored. Decode-and-forward (DF) relays can be deployed to regenerate packets reliably during their delivery over a long distance, thereby reducing the signal-to-noise ratio (SNR) loss. However, they also cause decoding delay in each hop, the sum of which may become large and cannot be ignored given the stringent latency constraints. This paper presents an optimal relay deployment to minimize the error probability while meeting both the latency and transmission power constraints. Based on an asymptotic analysis, a theoretical performance bound for distant short-packet transmission is also characterized by the optimal distance–latency–reliability tradeoff, which is expected to provide insights into designing integrated LEO satellite communications in 6G. 
    more » « less