skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topographic and Landcover Influence on Lower Atmospheric Profiles Measured by Small Unoccupied Aerial Systems (sUAS)
Small unoccupied aerial systems (sUASs) are increasingly being used for field data collection and remote sensing purposes. Their ease of use, ability to carry sensors, low cost, and precise maneuverability and navigation make them a versatile tool for a field researcher. Procedures and instrumentation for sUASs are largely undefined, especially for atmospheric and hydrologic applications. The sUAS’s ability to collect atmospheric data for characterizing land–atmosphere interactions was examined at three distinct locations: Costa Rican rainforest, mountainous terrain in Georgia, USA, and land surfaces surrounding a lake in Florida, USA. This study aims to give further insight on rapid, sub-hourly changes in the planetary boundary layer and how land development alters land–atmosphere interactions. The methodology of using an sUAS for land–atmospheric remote sensing and data collection was developed and refined by considering sUAS wind downdraft influence and executing systematic flight patterns throughout the day. The sUAS was successful in gathering temperature and dew point data, including rapid variations due to changing weather conditions, at high spatial and temporal resolution over various land types, including water, forest, mountainous terrain, agriculture, and impermeable human-made surfaces. The procedure produced reliably consistent vertical profiles over small domains in space and time, validating the general approach. These findings suggest a healthy ability to diagnose land surface atmospheric interactions that influence the dynamic nature of the near-surface boundary layer.  more » « less
Award ID(s):
1925148 1659848
PAR ID:
10295776
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Drones
Volume:
5
Issue:
3
ISSN:
2504-446X
Page Range / eLocation ID:
82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thomasson, J. Alex; Torres-Rua, Alfonso F. (Ed.)
    sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (TSEB) model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project, commercial software (ArcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be easily migrated to high performance computing (HPC) resources. This research, sponsored by the National Science Foundation FAIR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and replicable. 
    more » « less
  2. Abstract Land-atmosphere feedbacks are a critical component of the hydrologic cycle. Vertical profiles of boundary layer temperature and moisture, together with information about the land surface, are used to compute land-atmosphere coupling metrics. Ground based remote sensing platforms, such as the Atmospheric Emitted Radiance Interferometer (AERI), can provide high temporal resolution vertical profiles of temperature and moisture. When co-located with soil moisture, surface flux, and surface meteorological observations, such as at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, it is possible to observe both the terrestrial and atmospheric legs of land-atmosphere feedbacks. In this study, we compare a commonly used coupling metric computed from radiosonde-based data to that obtained from the AERI to characterize the accuracy and uncertainty in the metric derived from the two distinct platforms. This approach demonstrates the AERI’s utility where radiosonde observations are absent in time and/or space. Radiosonde and AERI based observations of the Convective Triggering Potential and Low-Level Humidity Index (CTP-HI low ) were computed during the 1200 UTC observation time and displayed good agreement during both 2017 and 2019 warm seasons. Radiosonde and AERI derived metrics diagnosed the same atmospheric preconditioning based upon the CTP-HI low framework a majority of the time. When retrieval uncertainty was considered, even greater agreement was found between radiosonde and AERI derived classification. The AERI’s ability to represent this coupling metric well enabled novel exploration of temporal variability within the overnight period in CTP and HI low . Observations of CTP-HI low computed within a few hours of 1200 UTC were essentially equivalent, however with greater differences in time arose greater differences in CTP and HI low . 
    more » « less
  3. Abstract Understanding near-surface atmospheric behavior in the tropics is imperative given the role of tropical energy fluxes in Earth’s climate cycles, but this area is complicated by a land–atmosphere interaction that includes rugged topography, seasonal weather drivers, and frequent environmental disturbances. This study examines variation in near-surface atmospheric behaviors in northeastern Puerto Rico using a synthesis of data from lowland and montane locations under different land covers (forest, urban, and rural) during 2008–21, when a severe drought, large hurricanes (Irma and Maria), and the COVID-19 mobility-reducing lockdown occurred. Ceilometer, weather, air quality, radiosonde, and satellite data were analyzed for annual patterns and monthly time series of data and data correlations. The results showed a system that is strongly dominated by easterly trade winds transmitting regional oceanic patterns over terrain. Environmental disturbances affected land–atmosphere interaction for short time periods after events. Events that reduce the land signature (reducing greenness: e.g., drought and hurricanes, or reducing land pollution: e.g., COVID-19 lockdown) were evidenced to strengthen the transmission of the oceanic pattern. The most variation in near-surface atmospheric behavior was seen in the mountainous areas that were influenced by both factors: trade winds, and terrain-induced orographic lifting. As an exception to the rest of the near-surface atmospheric behavior, pollutants other than ozone did not correlate positively or negatively with stronger trade winds at all sites across the region. Instead, these pollutants were hypothesized to be more anthropogenically influenced. Once COVID-19 lockdown had persisted for 3 months, urban pollution decreased and cloud base may have increased. 
    more » « less
  4. Abstract. This study analyzes turbulent energy fluxes in the Arctic atmospheric boundary layer (ABL) using measurements with a small uncrewed aircraft system (sUAS). Turbulent fluxes constitute a major part of the atmospheric energy budget and influence the surface heat balance by distributing energy vertically in the atmosphere. However, only few in situ measurements of the vertical profile of turbulent fluxes in the Arctic ABL exist. The study presents a method to derive turbulent heat fluxes from DataHawk2 sUAS turbulence measurements, based on the flux gradient method with a parameterization of the turbulent exchange coefficient. This parameterization is derived from high-resolution horizontal wind speed measurements in combination with formulations for the turbulent Prandtl number and anisotropy depending on stability. Measurements were taken during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the Arctic sea ice during the melt season of 2020. For three example cases from this campaign, vertical profiles of turbulence parameters and turbulent heat fluxes are presented and compared to balloon-borne, radar, and near-surface measurements. The combination of all measurements draws a consistent picture of ABL conditions and demonstrates the unique potential of the presented method for studying turbulent exchange processes in the vertical ABL profile with sUAS measurements. 
    more » « less
  5. Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions. 
    more » « less