skip to main content


Title: Optimality of the Discrete Fourier Transform for Beamspace Massive MU-MIMO Communication
Beamspace processing is an emerging technique to reduce baseband complexity in massive multiuser (MU) multipleinput multiple-output (MIMO) communication systems operating at millimeter-wave (mmWave) and terahertz frequencies. The high directionality of wave propagation at such high frequencies ensures that only a small number of transmission paths exist between user equipments and basestation (BS). In order to resolve the sparse nature of wave propagation, beamspace processing traditionally computes a spatial discrete Fourier transform (DFT) across a uniform linear antenna array at the BS where each DFT output is associated with a specific beam. In this paper, we study optimality conditions of the DFT for sparsity-based beamspace processing with idealistic mmWave channel models and realistic channels. To this end, we propose two algorithms that learn unitary beamspace transforms using an l4-norm-based sparsity measure, and we investigate their optimality theoretically and via simulations.  more » « less
Award ID(s):
1824379 1717559
NSF-PAR ID:
10295784
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Symposium on Information Theory
Page Range / eLocation ID:
2960 to 2965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Massive multi-antenna millimeter wave (mmWave) and terahertz wireless systems promise high-bandwidth communication to multiple user equipments in the same time-frequency resource. The high path loss of wave propagation at such frequencies and the fine-grained nature of beamforming with massive antenna arrays necessitates accurate channel estimation to fully exploit the advantages of such systems. In this paper, we propose BEAmspace CHannel EStimation (BEACHES), a low-complexity channel estimation algorithm for multi-antenna mmWave systems and beyond. BEACHES leverages the fact that wave propagation at high frequencies is directional, which enables us to denoise the (approximately) sparse channel state information in the beamspace domain. To avoid tedious parameter selection, BEACHES includes a computationally-efficient tuning stage that provably minimizes the mean-square error of the channel estimate in the large-antenna limit. To demonstrate the efficacy of BEACHES, we provide simulation results for line-of-sight (LoS) and non-LoS mmWave channel models. 
    more » « less
  2. null (Ed.)
    We propose equalization-based data detection algorithms for all-digital millimeter-wave (mmWave) massive multiuser multiple-input multiple-out (MU-MIMO) systems that exploit sparsity in the beamspace domain to reduce complexity. We provide a condition on the number of users, basestation antennas, and channel sparsity for which beamspace equalization can be less complex than conventional antenna-domain processing. We evaluate the performance-complexity trade-offs of existing and new beamspace equalization algorithms using simulations with realistic mmWave channel models. Our results reveal that one of our proposed beamspace equalization algorithms achieves up to 8× complexity reduction under line-of-sight conditions, assuming a sufficiently large number of transmissions within the channel coherence interval. 
    more » « less
  3. We propose SParsity-ADaptive Equalization (SPADE), a novel approach to reduce the effective number of multiplications in sparse inner products by adaptively skipping multiplications that have little to no effect on the result. We apply SPADE to beamspace linear minimum mean square error (LMMSE) spatial equalization in all-digital millimeter-wave (mmWave) massive multiuser multiple-input multiple-output (MU-MIMO) systems. We propose a SPADE-based architecture that mutes insignificant multiplications to offer power savings. We use simulation results with line-of-sight (LoS) and non-LoS mmWave channel models to demonstrate that SPADE-LMMSE performs on par with state-of-the-art beamspace equalizers in terms of bit error-rate, while requiring significantly lower preprocessing complexity. 
    more » « less
  4. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×. 
    more » « less
  5. null (Ed.)
    We propose sparsity-adaptive beamspace channel estimation algorithms that improve accuracy for 1-bit data converters in all-digital millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) basestations. Our algorithms include a tuning stage based on Stein's unbiased risk estimate (SURE) that automatically selects optimal denoising parameters depending on the instantaneous channel conditions. Simulation results with line-of-sight (LoS) and non-LoS mmWave massive MIMO channel models show that our algorithms improve channel estimation accuracy with 1-bit measurements in a computationally-efficient manner. 
    more » « less