skip to main content


Title: Digital Head Circumference Measurement at the Point-of-Care
Our digital method can measure head shape parameters from head photos with comparable accuracy to expert caliper measurements. This method can be deployed via a smartphone app to enable frequent infant cranial measurements at the point-of-care, and provide decision support tool for pediatricians and care givers.  more » « less
Award ID(s):
2036061
NSF-PAR ID:
10295846
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Digital Head Circumference Measurement at the Point-of-Care
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background & Purpose: Deformational plagiocephaly and brachycephaly (DPB) is a cranial condition manifested in 20% of infants in the US. DPB affects children and their families through psychological pressure, social stigma, and significant medical costs. If detected between 0-3 months of age, there is strong potential for correction via aggressive repositioning and/or physical therapy if congenital muscular torticollis is present. At later stages, DPB is most effectively treated by more expensive treatments like helmet therapy. Two cranial parameters that can help with the early detection and tracking of DPB are the cranial index (CI) and cranial vault asymmetry index (CVAI). Currently, these measurements are performed with a hand caliper by a specialist, i.e., nurse practitioner (CRNP) or physician assistant who specializes in cleft-craniofacial diagnosis, physical therapist, pediatric plastic/neurosurgeons, or orthotist. To make the measurements frequent, accessible, and accurate at the point of care, i.e., in pediatric offices, we developed and evaluated a mobile app called SoftspotTM to measure CI and CVAI, thus facilitating the early detection and monitoring of DPB. Method/Description: Sequences of bird’s eye-view head photos extracted from video were collected for 77 patients (aged 2 – 11 months, 51 females, 26 males) with an iPhone X (Apple Inc., Cupertino, CA). The head length, width, and diagonals were measured by a single CRNP via hand calipers at a large multidisciplinary cranio-facial center with IRB approval and patient consent. For each patient, five images were chosen by an analyst and segmented into head components, namely the head and nose, using quantitative imaging methods. For each image CI and CVAI were automatically measured, and these measurements were averaged for each patient. Automated CI and CVAI measurements were compared to values obtained by the caliper measurements in terms of mean absolute error (MAE), and outliers were excluded beyond 3 standard deviations away from the average MAE. Results were further analyzed by the Bland-Altman method and Spearman Correlation Coefficient. Results: MAE was 2.18 ± 1.60 for CI and 1.57 ± 1.03 for CVAI measurements. Spearman Correlation Coefficients between measurements and ground truth were 0.93 for CI (p<0.001) and 0.91 for CVAI (p<0.001). Bland-Altman analysis revealed limits of agreement for CI and CVAI as [-4.59, 5.76] (mean = 0.59) and [-3.91, 3.40] (mean = -0.25) respectively. Conclusions: Digital smartphone-based methods for DPB assessment are feasible, and this study demonstrated significant correlation between automated digital measurements and ground truth clinical values. Smartphone-based measurements of DPB can be performed at the point of care to improve the early detection and treatment of DPB. 
    more » « less
  2. Background: Deformational plagiocephaly and brachycephaly (DPB) is manifested in ~20% of newborns in the US. DPB can be effectively corrected by repositioning and/or physical therapy if detected and monitored before 4 months of age. The cranial index (CI) and cranial vault asymmetry index (CVAI) are used for DPB diagnosis and monitoring. As there is no current tool available for pediatricians or parents to quantitatively measure these indices at the point-of-care, we developed a smartphone app, called SoftSpot, that measures CI and CVAI from photographs of a child’s head to increase the chances of early detection and treatment. Objective: To prospectively evaluate the accuracy of the smartphone measurements of CI and CVAI in a clinical setting. Methods: Bird’s eye-view head photos of 117 infants aged 2-11 months (42 female, 75 male) were captured at a large multidisciplinary craniofacial center with the SoftSpot app (PediaMetrix Inc. Rockville, MD) using an iPhone X (Apple Inc., Cupertino, CA). The study was IRB approved and parent consent was obtained. Measurements included width, length, and diagonals of the patients’ head were obtained by a single CRNP and were used to calculate CI and CVAI as the ground truth. At least five images for each patient were chosen by an analyst, CI and CVAI were automatically measured by the proprietary algorithms of the app, and results were averaged for each patient. Automated and ground truth CI and CVAI measurements were compared using the Bland-Altman method and Spearman Correlation Coefficient after excluding outliers with mean absolute error (MAE) greater than two standard deviations. Results: MAE was 2.47 ± 1.68 for CI, 1.55 ± 1.03 for CVAI. Spearman correlation coefficients were 0.93 and 0.91 (p-values < 0.001) for CI and CVAI, respectively (see Fig. 2). Bland-Altman analysis (see Fig. 2 resulted in limits of agreement of [-4.41, 6.53] for CI and [-3.64, 3.68] for CVAI, with respective biases of 1.06 and 0.02. Conclusion: Our app measures CI and CVAI from head 2D photos with very high correlation to caliper-based measurements obtained in the craniofacial clinic. This prospective study demonstrates the clinical feasibility of using a smartphone app for cranial measurements at the point-of-care with the potential to early detect and monitor DPB. The app can potentially be used in telemedicine encounters when in-person visits are difficult due to circumstances like COVID-19 or for remote and underserved areas. 
    more » « less
  3. null (Ed.)
    The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source–detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries. 
    more » « less
  4. Multivariate time-series data are frequently observed in critical care settings and are typically characterized by sparsity (missing information) and irregular time intervals. Existing approaches for learning representations in this domain handle these challenges by either aggregation or imputation of values, which in-turn suppresses the fine-grained information and adds undesirable noise/overhead into the machine learning model. To tackle this problem, we propose a S elf-supervised Tra nsformer for T ime- S eries (STraTS) model, which overcomes these pitfalls by treating time-series as a set of observation triplets instead of using the standard dense matrix representation. It employs a novel Continuous Value Embedding technique to encode continuous time and variable values without the need for discretization. It is composed of a Transformer component with multi-head attention layers, which enable it to learn contextual triplet embeddings while avoiding the problems of recurrence and vanishing gradients that occur in recurrent architectures. In addition, to tackle the problem of limited availability of labeled data (which is typically observed in many healthcare applications), STraTS utilizes self-supervision by leveraging unlabeled data to learn better representations by using time-series forecasting as an auxiliary proxy task. Experiments on real-world multivariate clinical time-series benchmark datasets demonstrate that STraTS has better prediction performance than state-of-the-art methods for mortality prediction, especially when labeled data is limited. Finally, we also present an interpretable version of STraTS, which can identify important measurements in the time-series data. Our data preprocessing and model implementation codes are available at https://github.com/sindhura97/STraTS . 
    more » « less
  5. In this study, numerical simulations are performed to study the effects of body shape on propulsive performance in a carangiform-like swimming motion. A focus is given to the variation in performance due to changes in the maximum thickness, maximum thickness location, leading-edge radius, and boattail angle of an undulating foil. An immersed boundary method-based incompressible flow solver is implemented to solve for the propulsive performance of two-dimensional undulating foils. The resulting flow simulations yield the thrust, drag, efficiency, and flow for each body shape. From this study, we have found that better propulsive performance comes from a thinner maximum thickness, a maximum thickness location closer to the head of the fish, a narrower boattail angle, and a larger leading-edge radius. Particular care is given to the analysis of the boattail angle, because of the surprising and significant results. In changing only the boattail angle the efficiency is shown to vary by 10.3%. Changes in the leading-edge radius varies the efficiency by 4.4%, the maximum thickness by 4.0%, and the maximum thickness location along the body by 5.0%. The large improvement observed in the thinner boattail angle cases are caused by the increased curvature around the middle of the fish body leading to a high-pressure region at the tail that improves the thrust performance. The results can be used to improve understanding of fish body shapes observed in nature as well as better informing the design of bioinspired underwater robots. 
    more » « less