skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fusing Data Extracted from Bridge Inspection Reports for Enhanced Data-Driven Bridge Deterioration Prediction: A Hybrid Data Fusion Method
Award ID(s):
1937115
PAR ID:
10295882
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Computing in Civil Engineering
Volume:
34
Issue:
6
ISSN:
0887-3801
Page Range / eLocation ID:
04020047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. The massive surge in the amount of observational field data demands richer and more meaningful collab- oration between data scientists and geoscientists. This document was written by members of the Working Group on Case Studies of the NSF-funded RCN on Intelli- gent Systems Research To Support Geosciences (IS-GEO, https://is-geo.org/) to describe our vision to build and enhance such collaboration through the use of specially- designed benchmark datasets. Benchmark datasets serve as summary descriptions of problem areas, providing a simple interface between disciplines without requiring extensive background knowledge. Benchmark data intend to address a number of overarching goals. First, they are concrete, identifiable, and public, which results in a natural coordination of research efforts across multiple disciplines and institutions. Second, they provide multi- fold opportunities for objective comparison of various algorithms in terms of computational costs, accuracy, utility and other measurable standards, to address a particular question in geoscience. Third, as materials for education, the benchmark data cultivate future human capital and interest in geoscience problems and data science methods. Finally, a concerted effort to produce and publish benchmarks has the potential to spur the development of new data science methods, while provid- ing deeper insights into many fundamental problems in modern geosciences. That is, similarly to the critical role the genomic and molecular biology data archives serve in facilitating the field of bioinformatics, we expect that the proposed geosciences data repository will serve as “catalysts” for the new discicpline of geoinformatics. We describe specifications of a high quality geoscience bench- mark dataset and discuss some of our first benchmark efforts. We invite the Climate Informatics community to join us in creating additional benchmarks that aim to address important climate science problems. 
    more » « less