skip to main content


Title: STEM Identities: A Communication Theory of Identity Approach
Education and psychology research has established STEM (science, technology, engineering, and mathematics) identities as an important factor in explaining student persistence in STEM fields. Few studies in social psychology of language or communication have investigated STEM identities, despite the fundamentally communicative nature of identity. Identity talk produced in semi-structured interviews with undergraduate engineering majors ( N = 16) at three U.S. universities was analyzed qualitatively using the Communication Theory of Identity (CTI) as a sensitizing framework. The analysis showed that these students’ STEM identities emphasized personal attributes such as work ethic and a desire to make a positive difference in the world as well as relationships with peers in engineering. A number of potential identity gaps which might present barriers to forming a STEM identity were also evident in the data. These results underscore the importance of a communicative (interactive and relational) perspective in understanding students’ development and expression of STEM identities.  more » « less
Award ID(s):
1833987 1833817
NSF-PAR ID:
10295904
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Language and Social Psychology
ISSN:
0261-927X
Page Range / eLocation ID:
0261927X2110306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Complete Evidence-based Practice paper will describe how three different public urban research universities designed, executed, and iterated Summer Bridge programming for a subset of incoming first-year engineering students over the course of three consecutive years. There were commonalities between each institution’s Summer Bridge, as well as unique aspects catering to the specific needs and structures of each institution. Both these commonalities and unique aspects will be discussed, in addition to the processes of iteration and improvement, target student populations, and reported student outcomes. Finally, recommendations for other institutions seeking to launch or refine similar programming will be shared. Summer Bridge programming at each of the three institutions shared certain communalities. Mostly notably, each of the three institutions developed its Summer Bridge as an additional way to provide support for students receiving an NSF S-STEM scholarship. The purpose of each Summer Bridge was to build community among these students, prepare them for the academic rigor of first-year engineering curriculum, and edify their STEM identity and sense of belonging. Each Summer Bridge was a 3-5 day experience held in the week immediately prior to the start of the Fall semester. In addition to these communalities, each Summer Bridge also had its own unique features. At the first institution, Summer Bridge is focused on increasing college readiness through the transition from summer break into impending coursework. This institution’s Summer Bridge includes STEM special-interest presentations (such as biomedical or electrical engineering) and other development activities (such as communication and growth mindset workshops). Additionally, this institution’s Summer Bridge continues into the fall semester via a 1-credit hour First Year Seminar class, which builds and reinforces student networking and community beyond the summer experience. At the second institution, all students receiving the NSF S-STEM scholarship (not only those who are first-year students) participate in Summer Bridge. This means that S-STEM scholars at this institution participate in Summer Bridge multiple years in a row. Relatedly, after the first year, Summer Bridge transitioned to a student-led and student-delivered program, affording sophomore and junior students leadership opportunities, which not only serve as marketable experience after graduation, but also further builds their sense of STEM identity and belonging. At the third institution, a special focus was given to building community. This was achieved through several means. First, each day of Summer Bridge included a unique team-oriented design challenge where students got to work together and know each other within an engineering context, also reinforcing their STEM identities. Second, students at this institution’s Summer Bridge met their future instructors in an informal, conversational, lunch setting; many students reported this was one of their favorite aspects of Summer Bridge. Finally, Summer Bridge facilitated a first connect between incoming first-year students and their peer mentors (sophomore and junior students also receiving the NSF S-STEM scholarship), with whom they would meet regularly throughout the following fall and spring semesters. Each of the three institutions employed processes of iteration and improvement for their Summer Bridge programming over the course of two or three consecutive years. Through each version and iteration of Summer Bridge, positive student outcomes are demonstrated, including direct student feedback indicating built community among students and the perception that their time spent during Summer Bridge was valuable. Based on the experiences of these three institutions, as well as research on other institutions’ Summer Bridge programming, recommendations for those seeking to launch or refine similar Summer Bridge programming will also be shared. 
    more » « less
  2. ABSTRACT Over the last 30 years over 30,000 articles and chapters have been published related to mentoring, with over 40% focused on mentoring students in STEM disciplines. What have we learned from this voluminous literature and what concepts stand out as needing further attention? A review of the literature indicates that mentoring of underrepresented minoritized (URM) students involve attention to the professional development of these students, active engagement in research activities, and a willingness and ability to develop a strong relationship that supersedes the aspects of traditional mentoring activities. Psychology graduate programs have long been known to teach and develop the skills necessary to help students foster strong therapeutic relationships. The foundational interpersonal skills taught in domains of psychology (e.g., counseling psychology, social psychology) are directly relevant to other relationship-building scenarios, such as mentor/mentee dyads. Budding psychologists typically learn therapeutic techniques that help build trusting relationships with clients that hold different identities than their own. But these skills apply beyond client/therapist relations and could be used to inform intensive/inclusive mentoring approaches with URM students, especially when the mentor holds a different identity. The training techniques proposed can be adapted for both formal and informal forms of mentoring and may enhance a student’s sense of belonging, which is the strongest predictor of science identity development and success in STEM. This paper will focus on elements necessary to develop a strong relationship between URM students and their mentors based on the development of a therapeutic relationship using concepts from theories related to the Common Factors (Rosenzweig, 1936). These theories posit that the development of a meaningful client/therapist relationship and behavior change requires attention to four common factors: therapist qualities or in this case mentor qualities, change processes or how students are trained, treatment structures which are specific techniques, and development of a strong relationship. These factors can easily be applied to create a truly inclusive mentoring model. 
    more » « less
  3. BACKGROUND Previous work has identified the reality of structural constraints placed on engineering students from underrepresented gender, racial, or ethnic backgrounds, a process known as minoritization. Students from minoritized and marginalized backgrounds are often expected to overcome additional obstacles in order to be successful in engineering or to claim identity as an engineer. Such a cultural backdrop contributes to the experience of professional shame, which has not yet been characterized in the lived experiences of engineering students who identify with minoritized backgrounds. PURPOSE We contend that professional shame is a major factor in both creating and perpetuating cycles of marginalization that inhibit students from forming a professional identity as an engineer or succeeding in their academic program. Anchored in theoretical foundations of psychology and sociology, we define professional shame as a painful emotional experience that occurs when individuals perceive themselves to be wholly inadequate in relation to identity-relevant standards within a professional domain. In this paper, we examine the lived experiences of professional shame in undergraduate engineering students in the United States who identify with racial, gender, or ethnic backgrounds that are minoritized within the structural constraints of their engineering programs. METHODS To answer our research question: How do students from minoritized gender, racial or ethnic backgrounds experience professional shame within the context of engineering education? We conducted an interpretative methodological analysis (IPA). Specifically, we conducted semi-structured interviews with junior engineering majors (n = 7) from two predominantly white institutions (PWIs) who self-identified as being from a minoritized gender, racial, or ethnic background. We found IPA to be especially effective in answering our research question while affirming the nuances of the diversity found in our participants’ gender, racial and ethnic backgrounds. We carefully analyzed the interview transcripts, generating descriptive, linguistic, and contextual comments. These comments informed multiple emergent themes for each participant, which were subsequently integrated into robust themes that characterized the psychological experiences shared by all participants. SUMMARY OF FINDINGS Our findings are summarized in four robust, psychological themes. First, minoritized identities were salient in moments of professional shame. Second, in response to professional shame, students sought out confirmation of belonging within the engineering space. Third, their perception of engineering as an exceptionally difficult major that required exceptional smartness intensified the shame experience. And, finally, participants experienced a tension between wanting to adhere to engineering stereotypes and wanting to diverge from or alter engineering stereotypes. SIGNIFICANCE AND IMPLICATIONS Through examining participants’ experiences of shame and subsequent struggle to belong and claim identity as an engineer, we seek to address efforts in bolstering diversity, equity, and inclusion that may be hindered by the permeation of professional shame in the experience of minoritized students. We see these findings as critical in giving insight on how minoritization occurs and so that equity can become a systemic objective for everyone in the engineering community rather than the burden only on the shoulders of those who are marginalized by the community. 
    more » « less
  4. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  5. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less